Effective Programming Practices for Economists

Scientific Computing

Broadcasting

Janoś Gabler and Hans-Martin von Gaudecker

Examples of broadcasting

```
>>> a = np.zeros((2, 3), dtype=np.int64)
>>> a
array([[0, 0, 0],
    [0, 0, 0]])
# element-wise addition
>>> a + 1
array([[1, 1, 1],
# row-wise addition
>>> a + np.array([1, 2, 3])
array([[1, 2, 3],
    [1, 2, 3]])
# column-wise addition
>>> a + np.array([[4], [5]])
array([[4, 4, 4],
    [5, 5, 5]])
```

- Arrays don't have to have identical shapes to do calculations between them
- Smaller arrays are broadcasted to the larger shape
- Shapes need to be compatible as defined by the broadcasting rules

The broadcasting rule

Two arrays are compatible for broadcasting if for each trailing dimension (i.e., starting from the end) the axis lengths match or if either of the lengths is 1. Broadcasting is then applied over the missing or length 1 dimensions

More information and examples in the documentation

Detailed walk through examples

```
>>> a = np.zeros((2, 3), dtype=np.int64)
# row-wise addition
>>> b = np.array([1, 2, 3])
>>> b.shape
(3,)
>>> a + b
array([[1, 2, 3]
    [1, 2, 3]])
# column-wise addition
>>> c = np.array([[4], [5]])
>>> c.shape
(2, 1)
>>> a + c
array([[4, 4, 4],
    [5, 5, 5]])
```

- $a+b$: Axis 1 matches (3), axis 0 is broadcasted twice
- ‘a + c : Axis 1 is has length 1, axis 0 matches (2), axis 1 is broadcasted three times
- More efficient than repeating arrays!

Advanced example: Outer product

```
```

>>> a = np.array([1, 2, 3])

```
```

>>> a = np.array([1, 2, 3])
>>> b = np.array([4, 5, 6])
>>> b = np.array([4, 5, 6])
>>> np.outer(a, b)
>>> np.outer(a, b)
array([[4, 5, 6]
array([[4, 5, 6]
[8, 10, 12],
[8, 10, 12],
[12, 15, 18]])
[12, 15, 18]])
>>> a.reshape(1, 3) * b.reshape(3, 1)
>>> a.reshape(1, 3) * b.reshape(3, 1)
array([[[4, 8, 12],
array([[[4, 8, 12],
>>> a * b.reshape(3, 1)
>>> a * b.reshape(3, 1)
\operatorname{array(}}\begin{array}{r}{[[[4,}
\operatorname{array(}}\begin{array}{r}{[[[4,}
array([[[4, 5, 6],
array([[[4, 5, 6],
\operatorname{array([}[[[4,

```
```

\operatorname{array([}[[[4,

```
```

- Here, broadcasting is used to calculate an outer product without using the np. outer function
- 'a` is reshaped to a row vector
- 'b is reshaped to a column vector
- Broadcasting rules apply along both axes!
- a would be implicitly treated as a row vector, too.

