
Effective Programming Practices for Economists

Scientific Computing

Broadcasting

Janoś Gabler and Hans-Martin von Gaudecker

1 / 5

Examples of broadcasting

Arrays don’t have to have identical
shapes to do calculations between
them
Smaller arrays are broadcasted to
the larger shape
Shapes need to be compatible as
defined by the broadcasting rules

>>> a = np.zeros((2, 3), dtype=np.int64)
>>> a
array([[0, 0, 0],
 [0, 0, 0]])

element-wise addition
>>> a + 1
array([[1, 1, 1],
 [1, 1, 1]])

row-wise addition
>>> a + np.array([1, 2, 3])
array([[1, 2, 3],
 [1, 2, 3]])

column-wise addition
>>> a + np.array([[4], [5]])
array([[4, 4, 4],
 [5, 5, 5]])

1 / 5

The broadcasting rule

Two arrays are compatible for broadcasting if for each trailing dimension (i.e.,
starting from the end) the axis lengths match or if either of the lengths is 1.
Broadcasting is then applied over the missing or length 1 dimensions

More information and examples in the documentation

1 / 5

https://numpy.org/doc/stable/user/basics.broadcasting.html

Detailed walk through examples

a + b : Axis 1 matches (3), axis 0 is
broadcasted twice
a + c : Axis 1 is has length 1, axis 0

matches (2), axis 1 is broadcasted
three times
More efficient than repeating arrays!

>>> a = np.zeros((2, 3), dtype=np.int64)

row-wise addition
>>> b = np.array([1, 2, 3])
>>> b.shape
(3,)
>>> a + b
array([[1, 2, 3],
 [1, 2, 3]])

column-wise addition
>>> c = np.array([[4], [5]])
>>> c.shape
(2, 1)
>>> a + c
array([[4, 4, 4],
 [5, 5, 5]])

` `

` `

1 / 5

Advanced example: Outer product

Here, broadcasting is used to calculate
an outer product without using the
np.outer function
a is reshaped to a row vector
b is reshaped to a column vector

Broadcasting rules apply along both
axes!
a would be implicitly treated as a row

vector, too.

>>> a = np.array([1, 2, 3])
>>> b = np.array([4, 5, 6])
>>> np.outer(a, b)
array([[4, 5, 6],
 [8, 10, 12],
 [12, 15, 18]])

>>> a.reshape(1, 3) * b.reshape(3, 1)
array([[4, 8, 12],
 [5, 10, 15],
 [6, 12, 18]])

>>> a * b.reshape(3, 1)
array([[4, 5, 6],
 [8, 10, 12],
 [12, 15, 18]])

` `

` `

` `

` `

1 / 5

