1/8

Effective Programming Practices for Economists

Data management with pandas

Imperative data cleaning

Janos$ Gabler and Hans-Martin von Gaudecker

1/8

Survey of course participants

o o A~ W DN

~

Q001

strongly disagree

strongly agree
=77

agree

-99

nan

neutral
disagree
strongly agree

agree

Q002

agree
strongly agree
disagree

=77

-99

strongly agree
strongly agree
agree

-99

-99

Q003
python
Python

R

Python
Python
Python
Python
python
PYTHON

Ypthon

QO001: I am a coding genius
Q002:Ilearned a lot

QO003: What is your favourite
language?

-77 not readable
-99 no reply

All variables are strings after running

df pd.read_csv('survey.csv

1/8

Cleaning 1: New names

new_names
Qoe1 coding_genius
Q002 learned_a_lot
Qoe3 favorite_language

df df .rename(columns=new_names

1/8

Cleaning 2: Agreement scales

for var in coding_genius learned_a_lot
df[var df[var].replace -77 pd.NA -99 pd.NA
categories strongly disagree disagree neutral agree strongly agree

dtype pd.CategoricalDtype(categories=categories, ordered=True
df[var df[var].astype(dtype

Cleaning 3:

df["favorite_language df
df["favorite_language df
df["favorite_language df

df["favorite_language df

1/8

Favorite language

favorite_language
favorite_language
favorite_language
favorite_language

replace -77 pd.NA -99 pd.NA
str.lower str.strip
replace("ypthon python

astype(pd.CategoricalDtype

Result

o o~ W N = O

~

coding_genius

strongly disagree

strongly agree
NaN

agree

NaN

NaN

neutral
disagree
strongly agree

agree

learned_a_lot
agree

strongly agree
disagree

NaN

NaN

strongly agree
strongly agree
agree

NaN

NaN

favorite_language
python
python
.
python
python
python
python
python
python
python

1/8

>>> df.dtypes
coding_genius
learned_a_lot

category
category
favorite_language category
dtype: object

>>> df| "coding_genius'].cat.categories
[

strongly disagree’,

disagree’,

neutral',

agree’',

strongly agree

>>> df|["favorite_language'].cat.categories
['python', 'r']

Result is fine, but...

new_names = {
QOe1": "coding_genius",
Qoe2": "learned_a_lot",
Q003" : "favorite_language"”,
}

df = df.rename(columns=new_names)

for var in ["coding_genius", "learned_a_lot"]:
df[var] = df[var].replace({"'-77": pd.NA, "-99
categories = ['strongly disagree’, ‘disagree’,
dtype pd.CategoricalDtype(categories=categor

df[var] = df[var].astype(dtype)

df ["favorite_language
df ["favorite_language
df ["favorite_language
df ["favorite_language

df ["favorite_language
df ["favorite_language
df ["favorite_language
df ["favorite_language

—_— e

—_— e

© pd.NA})
neutral”, "agree", "strongly agree']
ies, ordered=True)

.replace({ ' -77": pd.NA, "-99": pd.NA})
.str.lower().str.strip()
.replace("ypthon", "python")
.astype(pd.CategoricalDtype())

1/8

1/8

Result is fine, but...

= Thevariables inside df change many times but keep their name

= There are many invalid intermediate states of df where variables already have their
final names. This is especially dangerous if code is spread across multiple cells, let
alone multiple files.

= The global namespace is cluttered with helper variables like var, categories, and
dtype .

= The code has no natural structure. We need comments to get some orientation.

= The only way to re-use code across variables is to include it in a loop. Hence, the
two agreement questions have to be cleaned at the same time, whether they are
related or not.

= We either had to repeat the name favorite_language multiple times or use method
chaining. Which is hard to read and debug.

