1/9

Effective Programming Practices for Economists

Data Analysis in Python

Cross-validation and hyperparameters in scikit-learn

Jano$ Gabler, Hans-Martin von Gaudecker, and Tim Mensinger



The bias-variance trade-off

For prediction, want to be as close to the values to be predicted as possible

Very simple models, e.g. just an intercept and a couple of regressors

= Large bias, low variance, no overfitting

Very large models, e.qg. including squares, interactions, ...

= Small bias, high variance, danger of overfitting

Typically, one or more parameters govern the bias variance trade-off

1/9



Example: Penalty in a logit model

» Logistic regression is fit by maximizing a log likelihood function

= Can augment likelihood by a term that penalizes model complexity
= Typically, model complexity means many non-zero parameters

» Penalty is a function of the parameter vector

6* = argmin, £(0; X,y) + X - p(0)

1/9



1/9

Different penalties

= L1 p(0) =D 16i]

= Penalizes all deviations from zero equally

» Induces sparsity

= Harder numerical optimization, not compatible with all optimizers
« 120 p(0) =>,067

= Penalizes values close to zero very weakly

= Does not induce sparsity

= Simpler numerical optimization



1/9

Two splits are not enough

Want to set tuning parameters optimally

Naive approach:
= Fit models with different parameters on training set
» Evaluate performance on test set

= Keep the best

Problem: Hyperparameters are over-fit to the test set

Use cross-validation to avoid this



1/9

K-fold cross validation

Idea: Split the training data repeatedly into:
= Data used for actual training

= Data used for evaluation

Repeat k times to get k scores

Keep model that achieves best average score

Use actual test set only once in the end to measure model quality



1/9

Cross-validaton

>>> from sklearn.model_selection import cross_val_score
>>> scores cross_val_score

Import and create instance as normal,

LogisticRegression(max_iter=30800 do not call fit()
X_train

y_train = L2 penalty is default
cv=5

» Provide data to cross_val_score

>>> scores
array

0.84844291 = cv argument specifies number of
0.84532872 folds

6.85709343

9.84492904 = cross_val_score Will call fit()
6.86396677

repeatedly

>>> scores.mean
0.8519521727205328



1/9

Systematic hyperparameter tuning

» Specify a combination of hyperparameters we want to try
= Calculate cross validation score for each set of parameters
= Keep model with best performance
= Re-fit best model on entire dataset

= Implementin GridSearchcv



Grid Search

>>>

>>>

>>>

>>>

>>>

>>>

from sklearn.model_selection import GridSearchCV
param_grid

penalty 12 11

C 0.1, 1, 10

GridSearchCV
LogisticRegression(solver
param_grid

cv=5

grid
liblinear

grid.fit(X_train, y_train
grid.best_params_
10 penalty 11

grid.best_estimator_.score
X_test
y_test

0.8430232558139535

param_grid keys are names of
arguments Of LogisticRegression

param_grid values are lists of possible
values for the arguments

Setting up the grid does not fit models
yet

grid.fit() takes some time and often
produces warnings

1/9



