
Effective Programming Practices for Economists

Data Analysis in Python

Cross-validation and hyperparameters in scikit-learn

Janoś Gabler, Hans-Martin von Gaudecker, and Tim Mensinger

1 / 9

The bias-variance trade-off
For prediction, want to be as close to the values to be predicted as possible

Very simple models, e.g. just an intercept and a couple of regressors

Large bias, low variance, no overfitting

Very large models, e.g. including squares, interactions, …

Small bias, high variance, danger of overfitting

Typically, one or more parameters govern the bias variance trade-off

1 / 9

Example: Penalty in a logit model
Logistic regression is fit by maximizing a log likelihood function

Can augment likelihood by a term that penalizes model complexity

Typically, model complexity means many non-zero parameters

Penalty is a function of the parameter vector

θ =∗ arg min ​ ℓ(θ;X , y) +θ λ ⋅ p(θ)

1 / 9

Different penalties
L1:

Penalizes all deviations from zero equally

Induces sparsity

Harder numerical optimization, not compatible with all optimizers

L2:

Penalizes values close to zero very weakly

Does not induce sparsity

Simpler numerical optimization

p(θ) = ​ ∣θ ​∣∑i i

p(θ) = ​ θ ​∑i i
2

1 / 9

Two splits are not enough
Want to set tuning parameters optimally

Naive approach:

Fit models with different parameters on training set

Evaluate performance on test set

Keep the best

Problem: Hyperparameters are over-fit to the test set

Use cross-validation to avoid this

1 / 9

K-fold cross validation
Idea: Split the training data repeatedly into:

Data used for actual training

Data used for evaluation

Repeat k times to get k scores

Keep model that achieves best average score

Use actual test set only once in the end to measure model quality

1 / 9

Cross-validaton

Import and create instance as normal,
do not call fit()

L2 penalty is default

Provide data to cross_val_score

cv argument specifies number of
folds

cross_val_score will call fit()
repeatedly

>>> from sklearn.model_selection import cross_val_score

>>> scores = cross_val_score(

... LogisticRegression(max_iter=3000),

... X_train,

... y_train,

... cv=5

...)

>>> scores

array([

 0.84844291,

 0.84532872,

 0.85709343,

 0.84492904,

 0.86396677

])

>>> scores.mean()

0.8519521727205328

1 / 9

Systematic hyperparameter tuning
Specify a combination of hyperparameters we want to try

Calculate cross validation score for each set of parameters

Keep model with best performance

Re-fit best model on entire dataset

Implement in GridSearchCV

1 / 9

Grid Search

param_grid keys are names of
arguments of LogisticRegression

param_grid values are lists of possible
values for the arguments

Setting up the grid does not fit models
yet

grid.fit() takes some time and often
produces warnings

>>> from sklearn.model_selection import GridSearchCV

>>> param_grid = {

... "penalty": ["l2", "l1"],

... "C": [0.1, 1, 10],

... }

>>> grid = GridSearchCV(

... LogisticRegression(solver="liblinear"),

... param_grid,

... cv=5,

...)

>>> grid.fit(X_train, y_train)

>>> grid.best_params_

{'C': 10, 'penalty': 'l1'}

>>> grid.best_estimator_.score(

... X_test,

... y_test

...)

0.8430232558139535

1 / 9

