Effective Programming Practices for Economists

Numerical Optimization

Derivative-Based Trust Region Algorithms

Janoś Gabler, Hans-Martin von Gaudecker, and Tim Mensinger

Basic Idea ([optimagic](https://optimagic.readthedocs.io/en/latest/explanation/explanation_of_numerical_optimizers.html#derivative-based-trust-region-algorithms) docs)

- 1. Set initial trust region radius.
- 2. Construct a quadratic Taylor approximation of the function based on function value, gradient, and (approximation to) the Hessian.

The Taylor approximation:

- **E** approximates the function well within the trust region if radius is not too large
- \blacksquare is a quadratic function that it easy to optimize.
- 3. Minimize the Taylor approximation within the trust region.
- 4. Evaluate the function again at the argument that minimized the Taylor approximation.
- 5. Compare expected and actual improvement.
	- Expected improvement is the decrease in the criterion according to the Taylor \blacksquare approximation.
	- Actual improvement is the decrease in the actual function value.
- 6. Accept the new parameters if actual improvement is good enough.
- 7. Modify the trust region radius (**important and complex step**).
- 8. Construct a new Taylor approximation …

Smaller radii better approximations ⇒

For a step s , the Taylor expansion of $f(x+s)$ around x satisfies:

 $f(x+s) = f(x) + f'(x)^\top s + \frac{1}{2} s^\top f''(x)s + o(\|s\|^2).$

- \blacksquare The step s is bounded by the trust region radius $\Delta \colon \|s\| \leq \Delta.$
- The step s is bounded by the trust region radius Δ : $\|s\| \leq \Delta$.
And therefore, as Δ decreases the approximation error $o(\|s\|^2)$ decreases. 2
- (Holds for any function f that is at least twice continuously differentiable.)

Initial Evaluation

Actual improvement $>$ expected improvement \Rightarrow accept, increase trust region radius

Actual improvement $<$ expected improvement, but large \Rightarrow accept, increase radius

Actual improvement negative \Rightarrow reject, decrease radius

Actual improvement \approx expected improvement \Rightarrow accept, increase radius

Actual improvement \approx expected improvement \Rightarrow accept, increase radius

Converge around here because gradient is close to zero.

A real algorithm: fides

