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Effective Programming Practices for Economists

Numerical Optimization

Derivative-Based Trust Region Algorithms

Janos Gabler, Hans-Martin von Gaudecker, and Tim Mensinger
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Basic Idea (optimagic docs)

1. Set initial trust region radius.

2. Construct a quadratic Taylor approximation of the function based on function
value, gradient, and (approximation to) the Hessian.

The Taylor approximation:
= approximates the function well within the trust region if radius is not too large
m s a quadratic function that it easy to optimize.

3. Minimize the Taylor approximation within the trust region.

4. Evaluate the function again at the argument that minimized the Taylor
approximation.


https://optimagic.readthedocs.io/en/latest/explanation/explanation_of_numerical_optimizers.html#derivative-based-trust-region-algorithms
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5. Compare expected and actual improvement.

m Expected improvement is the decrease in the criterion according to the Taylor
approximation.

= Actual improvement is the decrease in the actual function value.
6. Accept the new parameters if actual improvement is good enough.
7. Modify the trust region radius (important and complex step).

8. Construct a new Taylor approximation ...
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Smaller radii = better approximations

= For astep s, the Taylor expansion of f(x + s) around z satisfies:
f(z+s)=f(z)+ f'(z)"s+ 35 f"(z)s +o(]ls]?).

= The step s is bounded by the trust region radius A: ||s|| < A.

= And therefore, as A decreases the approximation error o(||s||*) decreases.

= (Holds for any function f that is at least twice continuously differentiable.)
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Initial Evaluation

® |nitial evaluation

— Taylor Approximation

% Minimum of Taylor Approximation
% Actual evaluation
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Actual improvement > expected improvement = accept, increase trust region radius
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Iteration 1

® |nitial evaluation

— Taylor Approximation

% Minimum of Taylor Approximation
% Actual evaluation
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Actual improvement < expected improvement, but large = accept, increase radius
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Iteration 2

® |nitial evaluation

— Taylor Approximation

% Minimum of Taylor Approximation
% Actual evaluation
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Actual improvement negative = reject, decrease radius
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Iteration 3

® |nitial evaluation

— Taylor Approximation

% Minimum of Taylor Approximation
% Actual evaluation
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Actual improvement /& expected improvement = accept, increase radius
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Iteration 4

® |nitial evaluation

— Taylor Approximation

% Minimum of Taylor Approximation
% Actual evaluation
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Actual improvement /& expected improvement = accept, increase radius
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Iteration 5

® |nitial evaluation
— Taylor Approximation

% Minimum of Taylor Approximation
% Actual evaluation
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Converge around here because gradient is close to zero.
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A real algorithm: fides

- All evaluations ‘% Best evaluation
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