
Effective Programming Practices for Economists

Scientific Computing

Calculations on arrays

Janoś Gabler and Hans-Martin von Gaudecker

1 / 5

Mathematical functions
Numpy functions usually apply
elementwise
Faster and more readable than
looping
For more functions see the docs

>>> a = np.array([1, 1.5, 2])
>>> np.exp(a)
array([2.71828183, 4.48168907, 7.3890561])

>>> np.log(a)
array([0. , 0.40546511, 0.69314718])

>>> np.sqrt(a)
array([1. , 1.22474487, 1.41421356])

>>> np.sin(a)
array([0.84147098, 0.99749499, 0.90929743])

1 / 5

https://numpy.org/doc/stable/reference/routines.math.html

Reductions
Reductions take an array of numbers
and reduce it to fewer numbers
Again, faster and more readable than
loops
All reductions support axis arguments

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
 [3, 4]])

>>> a.mean()
2.5

>>> a.std()
1.118033988749895

>>> a.sum()
10

>>> a.sum(axis=1)
array([3, 7])

1 / 5

Vectorization
The above functions are all vectorized

Vectorization is the process of converting an algorithm from operating on a single
value at a time to operating on a set of values (vector) at a time. Hence, we can use
these techniques to perform operations on Numpy arrays without using loops.

The loops are still there, but now in a compiled language
Faster than Python loops, list comprehensions, …
Sometimes vectorization makes code more readable

1 / 5

Linear algebra
All matrix decompositions you’ll ever
need are implemented
Check out the documentation for an
overview

>>> a = np.array([[1, 0], [0, 4]])
>>> np.linalg.inv(a)

array([[1. , 0.],
 [0. , 0.25]])

>>> np.linalg.cholesky(a)

array([[1., 0.],
 [0., 2.]])

1 / 5

https://numpy.org/doc/stable/reference/routines.linalg.html

