1/10

Effective Programming Practices for Economists

Basic Python

"for" loops

Janos Gabler and Hans-Martin von Gaudecker



Contents

= Don't Repeat Yourself

= Syntax of for loops

= Are for loops bad?

m Looping over lists and tuples
= Looping over dicts

= Common looping patterns

1/10



1/10

Don’t repeat yourself

>>> names = ["Guy", "Ray", "Tim"] = This code repetition is problematic

>>> lower_names = | = If we have a typo, we need to fix it

>>>  names[0].lower(), ) .
>>> names[1].lower(), multlple times

>>> ] names[2].lower(), s Cumbersome if list becomes longer
>>>

>>> lower_names = In many situations we want to do
['guy’, ‘ray’, "tim’] similar things multiple times

= (Cleaning several similar variables
= Fitting several models



A simple for loop

>>> for i in range(5):
print(i ** 2)

L O ® -

for running_var in iterable:
do_someth(running_var)
and_someth_else(running_var)

1/10

for loops let us do things repeatedly
First line ends witha

In each iteration, the running variable
is bound to a new value

Loop body with one or several lines is
indented by 4 spaces



1/10

Are for loops bad ?

= For loops have a bad reputation for being slow and inelegant, but:
= Having unnecessary code repetition is worse than a for loop!

= Slowness only matters if it is a bottleneck
= Sometimes they are the most readable solution
= Sometimes they are the fastest solution!

= For now, use for loops without hesitation

= Later you will learn when to use alternatives



1/10

Looping over lists and tuples

»>> names = ["Guy", "Ray”, "Tim"] = Looping over lists and tuples works in
>>> for name in names: the same way
print(name.lower()) ) . .. .
guy’ = Running variable is iteratively bound to
:an: the iterable’s elements
im
= Try to choose a good name for the
running variable!



1/10

Looping over dictionaries

>>> let_to_pos = { = By default you loop over
'a’: @, dictionary keys
o 2 = Use .items() for looping
.} over key/value pairs

>>> for let in let_to_pos:
print(let)

a

b

c

>>> for let, pos in let_to_pos.items():
print(let, pos)

O T o
N - -



1/10

Looping patterns

= Mapping loops
= Reduction loops
m (Filtering loops)



1/10

Mapping loops

>>> names = ["Guy", "Ray", "Tim"] = Create a new container by

>>> lower_names = [] transforming each element of

>>> for n in names: i
lower_names.append(n.lower()) another container

~>> lower_names = Arbitrarily complex

["guy’, 'ray’, 'tim’] transformations

>>> name_to_lower = {} m Often custom functions

>>> for n in names: .

- name_to_lower[n] = n.lower() u Examp|eS-

z>> name_to_lower m dict of results from dict of
Guy': 'guy’, model specifications
‘Ray': 'ray’, u .
S Apply mathematical

) functions to lists of inputs



1/10

Reduction loops

~>> numbers = [1, 2, 3] = Examples of reductions are averages,
>>> mean = 0.0 sums, products and counts
>>> for n in numbers: . . .

mean += n / len(numbers) = Assign the identity element of the

reduction as initial value
m Update the result in each iteration



