
Effective Programming Practices for Economists

Basic Python

"for" loops

Janoś Gabler and Hans-Martin von Gaudecker

1 / 10

Contents
Don’t Repeat Yourself
Syntax of for loops
Are for loops bad?
Looping over lists and tuples
Looping over dicts
Common looping patterns

1 / 10

Don’t repeat yourself
This code repetition is problematic

If we have a typo, we need to fix it
multiple times
Cumbersome if list becomes longer

In many situations we want to do
similar things multiple times

Cleaning several similar variables
Fitting several models
…

>>> names = ["Guy", "Ray", "Tim"]
>>> lower_names = [
>>> names[0].lower(),
>>> names[1].lower(),
>>> names[2].lower(),
>>>]
>>> lower_names
['guy', 'ray', 'tim']

1 / 10

A simple for loop
for loops let us do things repeatedly
First line ends with a :

In each iteration, the running variable
is bound to a new value
Loop body with one or several lines is
indented by 4 spaces

example
>>> for i in range(5):
... print(i ** 2)
0
1
4
9
16

general pattern
for running_var in iterable:
 do_someth(running_var)
 and_someth_else(running_var)

` `

1 / 10

Are for loops bad ?
For loops have a bad reputation for being slow and inelegant, but:

Having unnecessary code repetition is worse than a for loop!
Slowness only matters if it is a bottleneck
Sometimes they are the most readable solution
Sometimes they are the fastest solution!

For now, use for loops without hesitation
Later you will learn when to use alternatives

1 / 10

Looping over lists and tuples
Looping over lists and tuples works in
the same way
Running variable is iteratively bound to
the iterable’s elements
Try to choose a good name for the
running variable!

>>> names = ["Guy", "Ray", "Tim"]
>>> for name in names:
... print(name.lower())
'guy'
'ray'
'tim'

1 / 10

Looping over dictionaries
By default you loop over
dictionary keys
Use .items() for looping
over key/value pairs

>>> let_to_pos = {
... "a": 0,
... "b": 1,
... "c": 2,
... }

>>> for let in let_to_pos:
... print(let)
a
b
c

>>> for let, pos in let_to_pos.items():
... print(let, pos)
a 0
b 1
c 2

` `

1 / 10

Looping patterns
Mapping loops
Reduction loops
(Filtering loops)

1 / 10

Mapping loops
Create a new container by
transforming each element of
another container

Arbitrarily complex
transformations
Often custom functions

Examples:
dict of results from dict of
model specifications
Apply mathematical
functions to lists of inputs

>>> names = ["Guy", "Ray", "Tim"]
>>> lower_names = []
>>> for n in names:
... lower_names.append(n.lower())
>>> lower_names
['guy', 'ray', 'tim']

>>> name_to_lower = {}
>>> for n in names:
... name_to_lower[n] = n.lower()
>>> name_to_lower
{
 'Guy': 'guy',
 'Ray': 'ray',
 'Tim': 'tim'
}

1 / 10

Reduction loops
Examples of reductions are averages,
sums, products and counts
Assign the identity element of the
reduction as initial value
Update the result in each iteration

>>> numbers = [1, 2, 3]
>>> mean = 0.0
>>> for n in numbers:
... mean += n / len(numbers)

1 / 10

