
Effective Programming Practices for Economists

Numerical Optimization

Visualizing optimizer histories

Janoś Gabler and Hans-Martin von Gaudecker

1 / 8

Steps for choosing an algorithm

1. Theory (algorithms video)

2. Experimentation (here)

3. Refine until convergence

1 / 8

https://optimagic.readthedocs.io/en/latest/how_to/how_to_algorithm_selection.html#the-three-steps-for-selecting-algorithms

Motivation
You rarely have a guarantee that an optimizer will work

Assumptions of convergence proofs might not hold in practice

You might get stuck in local optima

Floating point calculations are never exact

But you can compare the performance of optimizers

Which one finds the lowest/highest function value?

Which one leads to the quickest decrease/increase in function values?

The criterion_plot makes this very easy!

1 / 8

Criterion plot
We assume you have done an optimization and the result is called res

1 / 8

An error occurred on this slide. Check the terminal for more information.

1 / 8

An error occurred on this slide. Check the terminal for more information.

1 / 8

An error occurred on this slide. Check the terminal for more information.

1 / 8

Criterion plot for multiple optimizations

0 50 100 150

0

100

200

300

400

500 scipy_neldermead
nlopt_neldermead
fides

No. of criterion evaluations

Cr
ite

ri
on

 v
al

ue

def sphere(x):

 return x @ x

results = {}

for algo in ["scipy_neldermead", "nlopt_neldermead", "fides"]:

 results[algo] = om.minimize(

 sphere,

 np.arange(10),

 algorithm=algo,

)

om.criterion_plot(results, max_evaluations=200)

1 / 8

