1/7

Effective Programming Practices for Economists

Data management with pandas

Selecting rows and columns

Janos Gabler and Hans-Martin von Gaudecker

Overview

= Selecting columns

m Selecting individual rows

= Selecting rows and columns

m Selecting rows using Boolean Series
m Selecting rows with queries

1/7

1/7

Selecting columns

>>> df["country"]

’ cuoe = Column selection is with square

2 Spain brackets

3 Spain .

Name: country, dtype: string m For multiple columns you need
double brackets:

>>> df[["country", "continent"]]

= Quter: selecting columns
= Inner: defining a list of variables

country continent

Cuba Americas

Cuba Americas

Spain Europe

Spain Europe

1/7

Selecting individual rows

>>> df.loc|[1] >>> df.loc[("Cuba", 2002)]
country Cuba continent Americas

continent Americas life_exp 77.158

year 2007 Name: (Cuba, 2002), dtype: object
life_exp 78.273

Name: 1, dtype: object
, m Selection of rows needs " .1oc[]
>>> df = df.set_index(["country", "year"])

>>> df.loc["Cuba"] m Selection is label based!

continent life_exp = For a MultiIndex you can specify

some or all levels
Americas 77.16

Americas 78.27

1/7

Selecting rows and columns

>>> df.loc[1, "country"]
'Cuba’ m Use .loc[rows, columns] to select rows

and columns

P year = Can use everything you have seen
1 Cuba 2007 before

>>> df.loc[[1, 3], ["country", "year"]]

] Spain 2007

1/7

Selecting rows using Boolean Series

df["year"] >= 2005

o False = Comparisons of Series produce

2 False Boolean Series!

3 True D . . o
Name: year, dtype: bool u Complex conditions with | and &

m Boolean Series can be used for
selecting rows

m Works also inside . 1oc

>>> df[df["year"] >= 2005]

country continent life_exp

Americas 78.27

Europe 80.94

1/7

Selecting rows with queries

" query selects rows
based on strings with
Americas 28.27 conditions

Europe 80.94 = Can use index names
just as column names

m Use single quotes (')
for string value inside
the query

m More readable than
selection via Boolean
Series

>>> df.query("year >= 20085")

country continent life_exp

>>> df.query("year >= 2005 & continent == 'Europe'")

country continent life_exp

3 Spain Europe 80.94

