1/7

Effective Programming Practices for Economists

Scientific Computing

Visualizing optimizer histories

Jano$ Gabler and Hans-Martin von Gaudecker



1/7

Motivation

= You rarely have a guarantee that an optimizer will work
= Assumptions of convergence proofs might not hold in practice
= You might get stuck in local optima
= Floating point calculations are never exact
= But you can compare the performance of optimizers
= Which one finds the lower function value?
= Which one decreases the function more quickly?

m The criterion_plot makes this very easy!



1/7

Criterion plot

We assume you have done an optimization and the result is called res"



1/7

Criterion plot

em.criterion_plot(res)

N 0
= First argument can be:
“ m ‘OptimizeResult’
2" = path to log file
H 15 = |ist or dict thereof
) 0] = Dictionary keys are used for legend
g
ol
0 100 200 200 400 500 600 700 '

No. of criterion evaluations



1/7

Criterion plot

em.criterion_plot(res, monotone=True)

304

25

= monotone=True shows the current best

(]
=
1

value

» useful if there are extreme values in history

Criterion value
v

=]
1

T T T T T T
o 100 200 300 400 500 600 700

No. of criterion evaluations



Criterion plot

em.criterion_plot(res, max_evaluations=300)
30
254

20

Criterion value

T T T
o 50 100 150 200 250

No. of criterion evaluations

max_evaluations limits the x-axis

1/7



1/7

Criterion plot for multiple optimizations

def sphere(x):
return x @ x

results = {}

for algo in ["scipy_neldermead", "nlopt_neldermead",

results[algo] = em.minimize(
sphere,
np.arange(10),
algorithm=algo,

em.criterion_plot(results, max_evaluations=200)

"fides"]:

Criterion value

500

400

300

200

100

scipy_neldermead
nlopt_neldermead
—— fides

T T
50 100 150

No. of criterion evaluations



