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Effective Programming Practices for Economists

Scientific Computing

Visualizing optimizer histories
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Motivation

= You rarely have a guarantee that an optimizer will work
= Assumptions of convergence proofs might not hold in practice
= You might get stuck in local optima
= Floating point calculations are never exact
= But you can compare the performance of optimizers
= Which one finds the lower function value?
= Which one decreases the function more quickly?

m The criterion_plot makes this very easy!
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Criterion plot

We assume you have done an optimization and the result is called res"
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Criterion plot

em.criterion_plot(res)
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Criterion plot

em.criterion_plot(res, monotone=True)
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Criterion plot

em.criterion_plot(res, max_evaluations=300)
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Criterion plot for multiple optimizations

def sphere(x):
return x @ x

results = {}

for algo in ["scipy_neldermead", "nlopt_neldermead",

results[algo] = em.minimize(
sphere,
np.arange(10),
algorithm=algo,

em.criterion_plot(results, max_evaluations=200)
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