
Effective Programming Practices for Economists

Scientific Computing

Introduction to making code fast

Janoś Gabler and Hans-Martin von Gaudecker

1 / 6

What do we mean by speedup

Same calculations

Same language

Faster execution

1 / 6

Speed can vary within a language

In this simple example, the speed difference

is 4.5x

Speed differences of 100x are common,

more is possible

It gets really slow if you do not use libraries

as intended

>>> def my_sum(numbers):

... out = 0

... for number in numbers:

... out += number

... return out

>>> numbers = list(range(10_000))

>>> %timeit my_sum(numbers)

128 µs ± 1.65 µs

>>> %timeit sum(numbers)

28.5 µs ± 275 ns

1 / 6

Python can be really fast

Numba uses the same technology as Julia (llvm)

JAX uses technologies Julia dreams of and is even developing them further

State of the art AI is trained in Python

We have beat Fortran code with Python code several times

1 / 6

https://discourse.julialang.org/t/what-happened-to-xla-jl/88088
https://mlir.llvm.org/

Only optimize bottlenecks

We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil

(Donald Knuth)

Typically, runtime is concentrated in a few sections of code

Making the rest faster will not change overall runtime

Important: Learn how to find those sections!

1 / 6

Process

If it doesn’t work, it doesn’t matter how fast it doesn’t work (Mich Ravera)

Get it to run

Get it right

Find the bottleneck

Speed up the bottleneck on one core

Think about parallelization

Repeat

1 / 6

