
Effective Programming Practices for Economists

Data management with pandas

Creating variables

Janoś Gabler and Hans-Martin von Gaudecker

1 / 6

Using numpy math functions

assume that df is the gapminder example

 country continent year life_exp log_life_exp

0 Cuba Americas 2002 77.16 4.35

1 Cuba Americas 2007 78.27 4.36

2 Spain Europe 2002 79.78 4.38

3 Spain Europe 2007 80.94 4.39

All functions you’ll ever need
are implemented:

np.log

np.exp

np.sqrt

np.power

…
See docs for details
Index is preserved
Very fast, vectorized
implementations

` `

>>> import numpy as np
>>> df["log_life_exp"] = np.log(df["life_exp"])
>>> df

` `

` `

` `

` `

1 / 6

https://numpy.org/doc/stable/reference/routines.math.html

Arithmetic with Series

 country year gdp_per_cap pop gdp_billion

0 Cuba 2002 6340.65 11226999 71.19

1 Cuba 2007 8948.10 11416987 102.16

2 Spain 2002 24835.47 40152517 997.21

3 Spain 2007 28821.06 40448191 1165.76

* , + , - , / , …
work as expected
All calculations
are aligned by
index
Not all Series
have to come
from the same
DataFrame or be
assigned to a
DataFrame

>>> df["gdp_billion"] = df["gdp_per_cap"] * df["pop"] / 1e9
>>> df

` ` ` ` ` ` ` `

1 / 6

Recoding values

 country continent year life_exp country_code

0 Cuba Americas 2002 77.16 CUB

1 Cuba Americas 2007 78.27 CUB

2 Spain Europe 2002 79.78 ESP

3 Spain Europe 2007 80.94 ESP

Can be useful to create new
variable or fix typos in string
variables
Not super fast, but faster
than any looping approach

>>> df["country_code"] = df["country"].replace(
... {"Cuba": "CUB", "Spain": "ESP"}
...)
>>> df

1 / 6

Vectorized if conditions

 country year gdp_per_cap income_status

0 Cuba 2002 6340.65 not rich

1 Cuba 2007 8948.10 not rich

2 Spain 2002 24835.47 rich

3 Spain 2007 28821.06 rich

pd.Series.where takes two Series as
arguments:
1. cond : Boolean Series determining

where values are kept
2. other : Series with values to be

used where cond is False

Can express general if conditions using
nested where
Vectorized and fast

>>> helper = pd.Series(
... "rich",
... index=df.index,
...)

>>> df["income_status"] = helper.where(
 cond=gapm_more["gdp_per_cap"] > 10000,
 other="not rich",
)

` `

` `

` `

` ` ` `

1 / 6

When is it okay to loop?

Over columns: ✅

Such a loop is not just ok, it is often
the fastest and most readable option
Accessing and inserting columns is
fast
Even if clean_variable is vectorized,
it’s runtime will completely dominate
any loop overhead

Over rows: ❌

Code example intentionally left blank
Use the vectorized functions from
above instead of loops
List comprehensions, df.apply ,
map , etc. are just python loops in

disguise and not faster in this case

clean = pd.DataFrame()
for var in varlist:
 clean[var] = clean_variable(df[var])

` `

` `

` `

1 / 6

