1/18

Dataclasses and Typed Structures

Structured Data with Type Safety

Effective Programming Practices for Economists

The Problem with Dicts

person
name Alice
age": 30
emial alice@example.com
def greet(person: dict str

return f"Hello, {person| name']}"

Issues:
= Typos in keys are silent errors

= No IDE autocomplete

= No documentation of structure

1/18

Dataclasses to the

from dataclasses import dataclass

dataclass

class Person
name: str
age: int
email: str

alice Person(name="Alice

def greet(person: Person

age=30, emial

str

return f"Hello, {person.name}"

Rescue

1/18

1/18

Dataclass Features

from dataclasses import dataclass

dataclass

class Point
x: float
y: float

p1 Point(1.0, 2.0

p2 Point(x=1.0, y=2.0
print(p1

p1 == Point(1.0, 2.0

1/18

Default Values

from dataclasses import dataclass

dataclass

class Config
host: str localhost
port: int 8080
debug: bool = False

configl Config
config2 = Config(host="prod.example.com", debug=True

Rule: Fields with defaults must come after fields without defaults

1/18

Mutable Default Gotcha

from dataclasses import dataclass, field

dataclass
class BadExample
items: list[int

dataclass
class GoodExample
items: list[int field(default_factory=1ist

a = GoodExample
b = GoodExample
a.items.append(1
print(b.items

1/18

Frozen Dataclasses (Immutable)

from dataclasses import dataclass
dataclass(frozen=True
class Coordinates

latitude: float
longitude: float

location Coordinates(52.52, 13.4865
locations: dict|[Coordinates, str location Berlin

location.latitude 0

Prefer frozen=True for data that shouldn’t change

1/18

NamedTuple Alternative

from typing import NamedTuple
class Point(NamedTuple

x: float
y: float

p Point(1.0, 2.0
p.x = 3.0

first = p[o

Dataclass vs NamedTuple

Feature

Mutable

Inheritance

Memory

Hashable

Tuple unpacking

Dict-like methods

Rule of thumb:;

Dataclass

Yes (by default)

Full support

Standard

Only if frozen

No

No

NamedTuple

No

Limited

Slightly less

Always

Yes

Yes

1/18

TypedDict for Dict Shapes

from typing import TypedDict

class PersonDict(TypedDict
name: str
age: int
email: str

person: PersonDict

name Alice
age 30
email alice@example.com

bad: PersonDict name

1/18

1/18

Optional Keys in TypedDict

from typing import TypedDict, NotRequired

class Config(TypedDict
host: str
port: int
debug: NotRequired|bool

configl: Config host localhost port": 8080
config2: Config host localhost port": 8080, "debug': True

When to Use Each

Use @dataclass when:

» Creating new data structures
= Need methods on the data
» Want IDE autocomplete for attributes

= Might need to modify values

Use TypedDict when:
= Working with JSON data
» |nterfacing with APIs that return dicts

= Gradual typing of existing dict-based code

1/18

1/18

Complex Nested Structures

from dataclasses import dataclass

@dataclass(frozen=True)
class Address:

street: str

city: str

country: str

@dataclass(frozen=True)
class Person:

name: str

age: int

address: Address

alice = Person(
name="Alice",
age=30,
address=Address(
street="123 Main St",
city="Berlin",
country="Germany",

Dataclass with Methods

from dataclasses import dataclass

@dataclass

class Rectangle:
width: float
height: float

def area(self) -> float:
return self.width * self.height

def scale(self, factor: float) -> "Rectangle”:
return Rectangle(
width=self.width * factor,
height=self.height * factor,

1/18

1/18

Post-Init Processing

from dataclasses import dataclass, field

@dataclass
class Circle:
radius: float
area: float = field(init=False)

def __post_init__(self) -> None:
Called after __init__.
import math
self.area = math.pi * self.radius ** 2

circle = Circle(radius=5)
print(circle.area)

1/18

Validation in Dataclasses

from dataclasses import dataclass

dataclass
class PositiveNumber
value: float

def __post_init__(self None
if self.value <= 0

raise ValueError(f"Value must be positive, got {self.value}"

PositiveNumber (5
PositiveNumber (-1

For complex validation, consider Pydantic or attrs

1/18

Real Example: Model Configuration

from dataclasses import dataclass, field

dataclass(frozen=True
class ModelConfig
Configuration for an economic model.

n_periods: int
discount_factor: float = 0.95
interest_rate: float = 0.03
grid_points: int = 100
seed: int 12345

config = ModelConfig(n_periods=50, grid_points=200

Summary

Structured data options:

m @dataclass - Flexible, feature-rich, mutable by default
= NamedTuple - Immutable, tuple-like, lightweight
= TypedDict - Type-safe dictionaries

Best practices:
m Use frozen=True forimmutable data
m Use field(default_factory=...) for mutable defaults

» Nest dataclasses for complex structures

1/18

