
Dataclasses and Typed Structures

Structured Data with Type Safety

Effective Programming Practices for Economists

1 / 18

The Problem with Dicts

Issues:

Typos in keys are silent errors

No IDE autocomplete

No documentation of structure

Untyped dictionary - easy to make mistakes

person = {

 "name": "Alice",

 "age": 30,

 "emial": "alice@example.com", # Typo! No error.

}

def greet(person: dict) -> str:

 # What keys exist? What types are the values?

 return f"Hello, {person['name']}"

1 / 18

Dataclasses to the Rescue

from dataclasses import dataclass

@dataclass

class Person:

 name: str

 age: int

 email: str

Now this is a type error!

alice = Person(name="Alice", age=30, emial="...") # IDE catches typo

def greet(person: Person) -> str:

 return f"Hello, {person.name}" # Autocomplete works!

1 / 18

Dataclass Features

from dataclasses import dataclass

@dataclass

class Point:

 x: float

 y: float

Automatically generated:

p1 = Point(1.0, 2.0) # __init__

p2 = Point(x=1.0, y=2.0) # Keyword args work

print(p1) # __repr__: Point(x=1.0, y=2.0)

p1 == Point(1.0, 2.0) # __eq__: True

1 / 18

Default Values

Rule: Fields with defaults must come after fields without defaults

from dataclasses import dataclass

@dataclass

class Config:

 host: str = "localhost"

 port: int = 8080

 debug: bool = False

Use defaults

config1 = Config() # All defaults

config2 = Config(host="prod.example.com", debug=True)

1 / 18

Mutable Default Gotcha

from dataclasses import dataclass, field

@dataclass

class BadExample:

 items: list[int] = [] # ERROR! Mutable default

@dataclass

class GoodExample:

 items: list[int] = field(default_factory=list) # Correct!

Each instance gets its own list

a = GoodExample()

b = GoodExample()

a.items.append(1)

print(b.items) # [] - not affected

1 / 18

Frozen Dataclasses (Immutable)

Prefer frozen=True for data that shouldn’t change

from dataclasses import dataclass

@dataclass(frozen=True)

class Coordinates:

 latitude: float

 longitude: float

Can be used as dict key!

location = Coordinates(52.52, 13.405)

locations: dict[Coordinates, str] = {location: "Berlin"}

Cannot be modified

location.latitude = 0 # TypeError: cannot assign to field

1 / 18

NamedTuple Alternative

from typing import NamedTuple

class Point(NamedTuple):

 x: float

 y: float

Immutable by default (it's a tuple)

p = Point(1.0, 2.0)

p.x = 3.0 # Error!

Can unpack like a tuple

x, y = p

Can index like a tuple

first = p[0]

1 / 18

Dataclass vs NamedTuple

Feature Dataclass NamedTuple

Mutable Yes (by default) No

Inheritance Full support Limited

Memory Standard Slightly less

Hashable Only if frozen Always

Tuple unpacking No Yes

Dict-like methods No Yes

Rule of thumb:

1 / 18

TypedDict for Dict Shapes

from typing import TypedDict

class PersonDict(TypedDict):

 name: str

 age: int

 email: str

Type checker validates keys and value types

person: PersonDict = {

 "name": "Alice",

 "age": 30,

 "email": "alice@example.com",

}

Error: missing key

bad: PersonDict = {"name": "Bob"} # Type error!

1 / 18

Optional Keys in TypedDict

from typing import TypedDict, NotRequired

class Config(TypedDict):

 host: str

 port: int

 debug: NotRequired[bool] # Optional key

Both are valid:

config1: Config = {"host": "localhost", "port": 8080}

config2: Config = {"host": "localhost", "port": 8080, "debug": True}

1 / 18

When to Use Each

Use @dataclass when:

Creating new data structures

Need methods on the data

Want IDE autocomplete for attributes

Might need to modify values

Use TypedDict when:

Working with JSON data

Interfacing with APIs that return dicts

Gradual typing of existing dict-based code

1 / 18

Complex Nested Structures

from dataclasses import dataclass

@dataclass(frozen=True)

class Address:

 street: str

 city: str

 country: str

@dataclass(frozen=True)

class Person:

 name: str

 age: int

 address: Address # Nested dataclass

Create nested structures

alice = Person(

 name="Alice",

 age=30,

 address=Address(

 street="123 Main St",

 city="Berlin",

 country="Germany",

1 / 18

Dataclass with Methods

from dataclasses import dataclass

@dataclass

class Rectangle:

 width: float

 height: float

 def area(self) -> float:

 return self.width * self.height

 def scale(self, factor: float) -> "Rectangle":

 return Rectangle(

 width=self.width * factor,

 height=self.height * factor,

)

1 / 18

Post-Init Processing

from dataclasses import dataclass, field

@dataclass

class Circle:

 radius: float

 area: float = field(init=False) # Computed, not in __init__

 def __post_init__(self) -> None:

 """Called after __init__."""

 import math

 self.area = math.pi * self.radius ** 2

circle = Circle(radius=5)

print(circle.area) # 78.54...

1 / 18

Validation in Dataclasses

For complex validation, consider Pydantic or attrs

from dataclasses import dataclass

@dataclass

class PositiveNumber:

 value: float

 def __post_init__(self) -> None:

 if self.value <= 0:

 raise ValueError(f"Value must be positive, got {self.value}")

PositiveNumber(5) # OK

PositiveNumber(-1) # Raises ValueError

1 / 18

Real Example: Model Configuration

from dataclasses import dataclass, field

@dataclass(frozen=True)

class ModelConfig:

 """Configuration for an economic model."""

 n_periods: int

 discount_factor: float = 0.95

 interest_rate: float = 0.03

 grid_points: int = 100

 seed: int = 12345

Type-safe configuration

config = ModelConfig(n_periods=50, grid_points=200)

1 / 18

Summary

Structured data options:

@dataclass - Flexible, feature-rich, mutable by default

NamedTuple - Immutable, tuple-like, lightweight

TypedDict - Type-safe dictionaries

Best practices:

Use frozen=True for immutable data

Use field(default_factory=...) for mutable defaults

Nest dataclasses for complex structures

1 / 18

