
Basic Type Hint Syntax

Annotating Functions and Variables

Effective Programming Practices for Economists

1 / 13

Function Annotations

Example:

Arguments: arg: Type

Return type: -> Type

def function_name(arg1: Type1, arg2: Type2) -> ReturnType:

 ...

def calculate_mean(values: list, n: int) -> float:

 return sum(values) / n

1 / 13

Built-in Types

Use lowercase for built-in types

int , float , str , bool , bytes , None

def example(

 count: int, # Integers

 price: float, # Floating point

 name: str, # Strings

 is_valid: bool, # Booleans

 data: bytes, # Binary data

) -> None: # Function returns nothing

 pass

1 / 13

Variable Annotations

When to annotate variables?

When the type isn’t obvious from the assignment

When declaring before assignment

Usually not necessary (IDE can infer)

count: int = 0

name: str = "Alice"

prices: list = [1.99, 2.49, 3.99]

Annotation without assignment (declares type)

result: float

1 / 13

Union Types

Use | to combine types

int | str means "either int or str"

Can chain: int | str | float

Can use for optional values: str | None

Accept multiple types

def process_id(id_value: int | str) -> str:

 return str(id_value)

process_id(3) # OK

process_id("abc") # OK

process_id(3.14) # Type error!

1 / 13

Default Arguments

Type hint comes before the default value

Pattern: name: Type = default

def greet(

 name: str,

 greeting: str = "Hello",

 punctuation: str = "!",

) -> str:

 return f"{greeting}, {name}{punctuation}"

1 / 13

Multiple Return Values

Use tuple[Type, ...] an unknown number of same-type elements

def get_stats(values: list[float]) -> tuple[float, float]:

 """Return mean and standard deviation."""

 mean = sum(values) / len(values)

 variance = sum((x - mean) ** 2 for x in values) / len(values)

 return mean, variance ** 0.5

Usage

mean, std = get_stats([1, 2, 3, 4, 5])

1 / 13

*args and **kwargs

Annotate the element type, not the container

*args: float means each arg is a float

**kwargs: str means each value is a str

def log_values(*args: float, **kwargs: str) -> None:

 """Log numeric values with string metadata."""

 for value in args:

 print(f"Value: {value}")

 for key, value in kwargs.items():

 print(f"{key}: {value}")

log_values(1.0, 2.0, 3.0, source="sensor", unit="celsius")

1 / 13

Type Aliases

Benefits:

Self-documenting code

Easy to change type in one place

More readable signatures

type UserId = int

type Coordinates = tuple[float, float]

type Matrix = list[list[float]]

def get_user_location(user_id: UserId) -> Coordinates:

 ...

def transpose(matrix: Matrix) -> Matrix:

 ...

1 / 13

The Any Type

Any disables type checking

Use when interacting with untyped code

Use during migration to typed code

Avoid in new code when possible

from typing import Any

def log_anything(value: Any) -> None:

 """Accept any type - use sparingly!"""

 print(value)

1 / 13

Common Mistake

Wrong: Using list without element type

Right: Specify element type

def bad(items: list) -> int: # What's in the list?

 return len(items)

def good(items: list[int]) -> int:

 return len(items)

1 / 13

Quick Reference

Type Example

Integer x: int = 3

Float x: float = 3.14

String x: str = "hello"

Boolean x: bool = True

None x: None = None

Optional x: str | None = None

Union x: int | str

1 / 13

Summary

Basic syntax:

arg: Type for parameters

-> Type for return values

var: Type = value for variables

Key types:

Built-ins: int , float , str , bool , None

Optional: Type | None

Union: Type1 | Type2

1 / 13

