1/13

Basic Type Hint Syntax

Annotating Functions and Variables

Effective Programming Practices for Economists



Function Annotations

def function_name(argl: Typel, arg2: Type2 ReturnType
Example:
def calculate_mean(values: 1list, n: int float

return sum(values) / n

= Arguments: arg: Type

m Return type: -> Type

1/13



1/13

Built-in Types

def example
count: int
price: float
name: str
is_valid: bool
data: bytes
None
pass

Use lowercase for built-in types

int, float, str, bool, bytes, None



1/13

Variable Annotations

count: int 0
name: str Alice
prices: list 1.99, 2.49, 3.99

result: float

When to annotate variables?
= When the type isn't obvious from the assignment
= When declaring before assignment

= Usually not necessary (IDE can infer)



1/13

Union Types

def process_id(id_value: int | str str
return str(id_value

process_id(3
process_id( "abc
process_id(3.14

Use | tocombine types

= int | str means "either int or str"
m Can chain: int | str | float

= Can use for optional values: str | None



1/13

Default Arguments

def greet
name: str
greeting: str Hello
punctuation: str !
str
return f"{greeting}, {name}{punctuation}”

= Type hint comes before the default value

m Pattern: name: Type = default



1/13

Multiple Return Values

def get_stats(values: list[float tuple[float, float
Return mean and standard deviation.
mean sum(values) / len(values
variance = sum((x - mean) ** 2 for x in values) / len(values
return mean, variance ** 0.5

mean, std = get_stats([1, 2, 3, 4, 5

Use tuple[Type, ...] anunknown number of same-type elements



*args and **kwargs

def log_values(*args: float, **kwargs: str None
Log numeric values with string metadata.
for value in args
print(f"Vvalue: {value}"
for key, value in kwargs.items
print(f"{key}: {value}"

log_values(1.8, 2.0, 3.0, source="sensor', unit="celsius

Annotate the element type, not the container
= *args: float means each arg is a float

= **kwargs: str means each value is a str

1/13



1/13

Type Aliases

type UserId = int
type Coordinates = tuple[float, float
type Matrix = list[list[float

def get_user_location(user_id: UserId Coordinates
def transpose(matrix: Matrix Matrix
Benefits:

» Self-documenting code
= Easy to change type in one place

= More readable signatures



1/13

The Any Type

from typing import Any

def log_anything(value: Any None
Accept any type - use sparingly!
print(value

Any disables type checking
= Use when interacting with untyped code
= Use during migration to typed code

= Avoid in new code when possible



1/13

Common Mistake

Wrong: Using list without element type

def bad(items: list int
return len(items

Right: Specify element type

def good(items: list[int int
return len(items



1/13

Quick Reference

Type Example

Integer X: int = 3

Float x: float = 3.14
String x: str = "hello"
Boolean x: bool = True

None x: None = None
Optional x: str | None = None

Union X: int | str



Summary

Basic syntax:

m arg: Type for parameters
= -> Type forreturn values

= var: Type = value forvariables

Key types:

» Built-ins: int, float, str, bool, None

= Optional: Type | None
= Union: Typel | Type2

1/13



