
Effective Programming Practices for Economists

Data Analysis in Python

Introduction to scikit-learn

Janoś Gabler, Hans-Martin von Gaudecker, and Tim Mensinger

1 / 18

Loading datasets from scikit-learn
Toy datasets can be found using sklearn.datasets.load_*

from sklearn.datasets import load_diabetes

diabetes = load_diabetes()

Real world datasets can be downloaded using sklearn.datasets.fetch_*

from sklearn.datasets import fetch_california_housing

housing = fetch_california_housing()

Some datasets can be generated using sklearn.datasets.make_*

from sklearn.datasets import make_regression

X, y = make_regression(n_samples=100, n_features=1, noise=0.1)

1 / 18

Example: California Housing

Re-define the target as 1 if the value is above the 70th-percentile, 0 otherwise:

>>> from sklearn.datasets import fetch_california_housing

>>> housing = fetch_california_housing()

>>> housing.keys()

dict_keys(['data', 'target', 'frame', 'target_names', 'feature_names', 'DESCR'])

>>> housing["data"].shape

(20640, 8)

>>> housing["feature_names"]

['MedInc', 'HouseAge', 'AveRooms', 'AveBedrms', 'Population', 'AveOccup', 'Latitude', 'Longitude']

>>> housing["target"].shape

(20640,)

>>> housing["target_names"]

['MedHouseVal']

>>> import numpy as np

>>> target = (housing["target"] > np.quantile(housing["target"], q=0.7)).astype(int)

1 / 18

Train-test splits

The function train_test_split lets
you:

select the test set size

set random_state for reproducibility

>>> from sklearn.model_selection import train_test_split

>>> X_train, X_test, y_train, y_test = train_test_split(

... housing["data"],

... target,

... random_state=1234,

... test_size=0.3,

...)

>>> X_train.shape

(14448, 8)

>>> y_train.shape

(14448,)

>>> X_test.shape

(6192, 8)

>>> y_test.shape

(6192,)

1 / 18

Basic scikit-learn steps
Arrange data into a features matrix / target vector, split into training / test sets

Choose a class of models by importing the appropriate estimator

Set hyperparameters by instantiating this class

Fit the model to your data by calling the fit() method on the model instance

Apply the model to new data using the predict() method

Evaluate the quality of predictions

1 / 18

Running Logistic regression in Sklearn

Use the LogisticRegression classifier
from sklearn to create the model
object

Fit the model to the training set to
estimate the parameters

Use the predict() method to
generate predictions

Use the score() method on the test
set to assess model quality

>>> from sklearn.linear_model import LogisticRegression

>>> model = LogisticRegression(

... fit_intercept=True,

... penalty=None,

...)

>>> model.fit(X_train, y_train)

>>> y_pred = model.predict(X_test)

>>> y_pred

array([0, 0, 1, ..., 0, 0, 0])

>>> model.score(X_test, y_test)

0.8320413436692506

1 / 18

Accuracy Score

Measures the share of correctly predicted data points

Advantage: Just one number

Disadvantage: Might not be what you care about

Accuracy = ​ ​ 1{y ​ =
N

1

i=1

∑
N

i ​ ​}ŷi

>>> from sklearn.metrics import accuracy_score

>>> accuracy_score(y_test, y_pred)

0.8320413436692506

1 / 18

layout: center

Accuracy with imbalanced data
Imbalanced data: Some outcomes occur more frequent than others in the data

Example: Predicting whether someone has a PhD in a classroom with 49 students
and one professor

Models can "cheat" by predicting majority outcome

Accuracy would be 98 % but model did not learn anything

Will need other scores to discover such problems

1 / 18

layout: center

The Confusion Matrix

Rows are the true labels

Columns are the predictions

Rows sum to 1

Diagonal elements show the share of
correctly classified examples in each
category

Bottom right element: 40 % of
observations with true label "Above
70th" got misclassified as "Below 70th"

>>> from sklearn.metrics import confusion_matrix

>>> import pandas as pd

>>> confusion = confusion_matrix(

... y_test, y_pred, normalize="true"

...)

>>> labels = ["Below 70th", "Above 70th"]

>>> confusion = pd.DataFrame(

... confusion,

... columns=labels,

... index=labels,

...)

>>> confusion

 Below 70th Above 70th

Below 70th 0.931839 0.068161

Above 70th 0.399678 0.600322

1 / 18

layout: center

A note on the different scores
Think of scores as different summaries of the confusion matrix

Scores are first calculated for each category

An aggregation strategy converts them into one score for the entire model

Only some aggregation strategies work well for imbalanced data

1 / 18

layout: center

Precision Score

For each class, measures the
probability of the predicted positive
case actually being truly positive ()

 (false positive) is the total number
of examples classified as label , but
actually from a different class

Preferred metric when false positive
predictions are costly

>>> from sklearn.metrics import precision_score

>>> precision_score(y_test, y_pred, average=None)

array([0.84407702, 0.79137199])

Precision ​ =k ​

TP ​ + FP ​k k

TP ​k

TP ​k

FP ​k

k

1 / 18

layout: center

Recall Score

For each class, measures the model’s
ability to find the positive cases

 (false negative) is the total
number of examples actually from
class that were not predicted by the
model as such

>>> from sklearn.metrics import recall_score

>>> recall_score(y_test, y_pred, average=None)

array([0.93183919, 0.60032189])

Recall ​ =k ​

TP ​ + FN ​k k

TP ​k
FN ​k

k

1 / 18

layout: center

 Score

 score is the harmonic mean of precision
and recall

For a given class, there is a trade-off in
precision and recall

 balances the two motives

Good choice if you have no reason to
penalize one error more than the another

F ​1

>>> from sklearn.metrics import f1_score

>>> f1_score(y_test, y_pred, average=None)

array([0.88578959, 0.68273337])

F ​ =1,k 2 ​

Precision ​ + Recall ​k k

Precision ​ ⋅ Recall ​k k

F ​1

F ​1

1 / 18

layout: center

Summary
Accuracy: share of correct predictions

Precision: True positives over positive predictions

Recall: True positives over actual positives

: Harmonic mean of Precision and RecallF ​1

1 / 18

layout: center

Scores with imbalanced data
Same example with 49 students and one professor

Models can "cheat" by predicting majority outcome

Accurracy: 98 %
Precision: 98 % for majority, 0 for minority class
Recall: 100 % for majority, 0 for minority class

: 99 % for majority, 0 for minority class

If we just look at scores for majority, we don’t see problems

Unfortunately that is what you get by default in sklearn in the binary case

F ​1

1 / 18

layout: center

Aggregation Strategies

"macro" strategy takes the simple mean over
scores for each class:

"weighted" strategy weights the scores by the
relative sizes of the classes

Aggregate score is the harmonic mean of the
aggregate precision and recall

>>> precision_score(

... y_test,

... y_pred,

... average="macro"

...)

0.8177245070078974

>>> precision_score(

... y_test,

... y_pred,

... average="weighted"

...)

0.8282110365957613

Precision =(macro)
​ ​ Precision

K
1 ∑k=1

K
k

Precision =(weighted)
​w ​ ⋅∑k=1

K
k Precision ​k

F ​1

1 / 18

layout: center

Sklearn’s Classification Report
>>> from sklearn.metrics import classification_report

>>> report = classification_report(

... y_test,

... y_pred,

... target_names=["Below 70th", "Above 70th"],

...)

... print(report)

 precision recall f1-score support

 Below 70th 0.84 0.93 0.89 4328

 Above 70th 0.79 0.60 0.68 1864

 accuracy 0.83 6192

 macro avg 0.82 0.77 0.78 6192

weighted avg 0.83 0.83 0.82 6192

1 / 18

layout: center

Example: Report with imbalanced data
 precision recall f1-score support

 0 0.98 1.00 0.99 49

 1 0.00 0.00 0.00 1

 accuracy 0.98 50

 macro avg 0.49 0.50 0.49 50

weighted avg 0.96 0.98 0.97 50

1 / 18

