
Effective Programming Practices for Economists

Basic Python

Dictionaries

Janoś Gabler and Hans-Martin von Gaudecker

1 / 8

Contents
Creating dictionaries
What can go in a dict
Accessing elements in dictionaries
Dangers of mutability
Advantages of labeled data structures

1 / 8

Dictionaries
Map a set of keys to a set of values
Creation by curly braces and : to
separate keys and values
mutable: Can add or overwrite entries
Order is preserved (since Python 3.6)

>>> a = {"a": 1, "b": 2, "c": 3}
>>> type(a)
<class 'dict'>

>>> a["b"]
2

>>> a["c"] = 42
>>> a
{'a': 1, 'b': 2, 'c': 42}

>>>a["d"] = 4
{'a': 1, 'b': 2, 'c': 42, 'd': 4}

` `

1 / 8

Fun facts about dicts in Python
Dicts are the absolute workhorse datastructure
Everything is an object and every object is just a dictionary under the hood!
Highly optimized for fast lookup!

1 / 8

What can go in a dict?
Keys need to be hashable, for example

strings
ints
tuples thereof

Values can be absolutely anything
If values are dicts we get nested
dictionaries

>>> nested = {
>>> 1: {"bla": "blubb"},
>>> "two": {"foo": "bar"},
>>> }

1 / 8

Accessing elements
Elements are accessed with square
brackets
Chained access for nested dictionaries

>>> flat = {"bla": "blubb"}
>>> nested = {
>>> 1: flat,
 "two": {"foo": "bar"}
>>> }

>>> flat["bla"]
'blubb'

>>> nested[1]
{'bla': 'blubb'}

>>> nested[1]["bla"]
'blubb'

1 / 8

Careful with mutability
Putting a dictionary inside another
dictionary does not make a copy
Useful to save memory, dangerous if
you don’t know about it
We will cover ways to deal with this
later

>>> flat = {"bla": "blubb"}
>>> nested = {
>>> 1: flat,
 "two": {"foo": "bar"}
>>> }

>>> nested[1]["bla"] = 42
>>> flat
{'bla': 42}

1 / 8

When to use dictionaries
Dictionaries provide label based access
Lists provide position based access
Label based access is more readable and less error prone!
Example use-cases:

Storing model specifications
Storing results of your anlysis
…

1 / 8

