1/6

Effective Programming Practices for Economists

Software engineering

How to raise errors?

Janos Gabler and Hans-Martin von Gaudecker

Raising a built-in exception

def convert
if not
msg

_lod_to_dol(lod):

isinstance(lod, list):

= f"lod must be a list,

raise TypeError(msg)

>>> convert_lod_to_dol("hello")

Traceback (most recent call last)

TypeError

not {type(lod)}."

/home/janos/playground.ipynb Cell 17 line 1
----> 1 convert_lod_to_dol("hello")

/home/janos/playground.ipynb Cell 17 line 4

2 if
3
_———- 4

TypeError:

not isinstance(lod,

msg = f"lod must be a list, not {type(lod)}."

list):

raise TypeError(msg)

lod must be a list,

not <class

‘str's>.

Errors are raised
with the raise
keyword

You can add a
custom message to
the built-in
exceptions

1/6

1/6

Common built-in errors

= Python has hundreds of built-in exceptions

= You can get very far with two:
= TypeError: An argument to your function has the wrong type
= ValueError: An argument to your function has the correct type but a wrong
value

m The full listis in the documentation

https://docs.python.org/3/library/exceptions.html#built-in-exceptions

fail functions

def convert_lod_to_dol(lod):
_fail_if_lod_is_not_a_list(1lod)

def _fail_if_lod_is_not_a_list(lod):

if not isinstance(lod, list):
msg = f"lod must be a list,
raise TypeError(msg)

not {type(lod)}."

1/6

It is a good idea to put
each check into a separate

_fail function

Choose a long and
descriptive name

Define the function at the
bottom of your module

Collect errors before raising

def _fail_if_list_of_wrong_types(data):
invalid_rows = []
for i, row in enumerate(data):
if not isinstance(row, dict):
invalid_rows.append(1i)

if invalid_rows:
report = "The following rows are not dictionaries:\n"
for i in invalid_rows:
report += f" Row {i} has type {type(datal[i])}\n"
raise TypeError(report)

1/6

If you have
multiple errors, it is
annoying to solve
them one by one

If possible, collect
multiple errors
before raising

Don’t go too far!

Raising a custom error

>>> class NonTabularDataError(Exception):
pass

>>> raise NonTabularDataError(
"The lists in dol have unequal length”

NonTabularDataError Traceback (most recent call last)
/home/janos/playground.ipynb Cell 18 line 4
1 class NonTabularDataError(Exception):

2 pass

----> 4 raise NonTabularDataError(
5 "The lists in dol have unequal length"
6)

NonTabularDataError: The lists in dol have unequal length

Defining a custom
error means defining a
class that inherits from

Exception

Trade-off

= Built-in exceptions
are familiar

m Custom exceptions
are more explicit

1/6

