
Effective Programming Practices for Economists

Basic Python

Principles for Good Functions

Janoś Gabler and Hans-Martin von Gaudecker

1 / 6

Contents
Why functions are important!
Guidelines for self-contained functions

Pass all variables you want to use inside
Do not modify mutable arguments

1 / 6

Why functions are important
Help to re-use code and avoid duplication
Help to structure code and reduce cognitive load
Make individual code snippets testable
Help to make your projects more reproducible
Unlock the power of functional programming concepts
Are also the basis for good object oriented code

1 / 6

Pass all variables you want to use inside
Inside a function you have
access to variables in the
enclosing scope
This is dangerous because the
behaviour of the function now
depends on global variables
Do not use this in your code!

bad example

>>> global_msg = "Hello {}!"

>>> def greet_with_global(name):

... print(global_msg.format(name))

>>> greet_with_global("Guido")

Hello Guido!

1 / 6

Pass all variables you want to use inside
Inside a function you have
access to variables in the
enclosing scope
This is dangerous because the
behaviour of the function now
depends on global variables
Do not use this in your code!

solution 1: define inside function

>>> def greet(name):

... msg = "Hello {}!

... print(msg.format(name))

>>> greet("Guido")

Hello Guido!

solution 2: pass as argument

>>> def greet_explicit(name, msg):

... print(msg.format(name))

>>> greet_explicit("Guido", "Hello {}!")

Hello Guido!

1 / 6

Do not modify mutable arguments
Arguments are passed by reference,
i.e. without making a copy
Make sure that functions do not
modify mutable arguments!

Make copies
Avoid changing objects in the first
place

>>> def append_4(some_list):

... some_list.append(4)

... return some_list

>>> a = [1, 2, 3]

>>> append_4(a)

[1, 2, 3, 4]

>>> a

[1, 2, 3, 4]

better solution

>>> def append_4(some_list)

... out = some_list.copy()

... out.append(4)

... return out

1 / 6

