1/6

Effective Programming Practices for Economists

Basic Python

Principles for Good Functions

Janos$ Gabler and Hans-Martin von Gaudecker

1/6

Contents

= Why functions are important!

= Guidelines for self-contained functions
= Pass all variables you want to use inside

= Do not modify mutable arguments

1/6

Why functions are important

= Help to re-use code and avoid duplication

» Help to structure code and reduce cognitive load

» Make individual code snippets testable

= Help to make your projects more reproducible

= Unlock the power of functional programming concepts
= Are also the basis for good object oriented code

1/6

Pass all variables you want to use inside

= Inside a function you have
>>> global_msg = 'Hello {}! access to variables in the
enclosing scope

>>> def greet_with_global(name

print(global_msg.format(name = This s dangerous because the
+>> greet_with_global(Guido behaviour of the funct!on now
Hello Guido! depends on global variables

= Do not use this in your code!

Pass all variables you want to use inside

>>> def greet(name
msg Hello {}!
print(msg.format(name
>>> greet("Guido
Hello Guido!

>>> def greet_explicit(name, msg
print(msg.format(name

>>> greet_explicit('Guido Hello {}!
Hello Guido!

= Inside a function you have

access to variables in the
enclosing scope

= This is dangerous because the

behaviour of the function now
depends on global variables

= Do not use this in your code!

1/6

1/6

Do not modify mutable arguments

>>>

>>>

>>

\%

>>>

>>>

def append_4(some_list
some_list.append(4
return some_list

a 1, 2, 3
append_4(a
2, 3, 4

2, 3, 4

def append_4(some_list
out some_list.copy
out.append(4
return out

Arguments are passed by reference,
i.e. without making a copy

Make sure that functions do not
modify mutable arguments!
= Make copies

= Avoid changing objects in the first
place

