1/9

Effective Programming Practices for Economists

Version Control and collaboration with

Git and Github

Pre-commit hooks

Janos$ Gabler and Hans-Martin von Gaudecker

1/9

What are pre-commit hooks

We saw the importance of following style guides

Pre-commit hooks are tools to help you automate style guides

= Examples of pre-commit hooks are:
m The black formatter that automatically formats your code

= The ruff linter that tells you about problems and fixes some of them
= Line-ending fixers for better compatibility across platforms
Save a lot of time but have a learning curve

1/9

Activating pre-commit hooks

m Install the pre_commit python package

B conda install pre_commit’
= Open a terminal in the root of your repository
m Execute pre-commit install

Just needs to be done once after cloning the repository

Configuring pre-commit hooks

= Pre-commit hooks are configured in

repos:
- repo: https://github.com/psf/black ".pre-commit-config.yaml’
rev: 23.9.1
hooks: = Typically inherited from the project
- id: black , templates or copy it from another
language_version: python3.11 .
project

m Example shows just the black
formatter

1/9

1/9

A useful git command

m git commit -am "Your message.' Stages and commits all modified files
m Does not work for untracked files
= Important because pre-commit hooks run over staged files!

1/9

A badly formatted python file

def clean_data(raw):
df = pd.DataFrame(index=raw.index)
df[“coding_genius"]=clean_agreement_scale(raw['Q601"'])
df['learned_a_lot']=clean_agreement_scale(

raw['Qee2'])
df['favorite_language'] = clean_favorite_language(raw/['Q6803'])
return df

def clean_agreement_scale(sr):
sr = sr.replace({'-77": pd.NA, '-99' :pd.NA})
categories = ['strongly disagree',
‘disagree’,
‘neutral', 'agree',
'strongly agree']
dtype = pd.CategoricalDtype(categories=categories,
ordered=True)
return sr.astype(dtype)

Git status

x - (a Mo Terminal

Terminal Terminal

example on Mmain [+] via % v3.11.0 via @ epp_topics
) git status
On branch main
Changes to be committed:
(use "git restore --staged <file>..." to unstage)
new file: example.py

example on fmain [+] via % v3.11.0 via @epp_topics
>

Terminal

1/9

First commit fails

x - (a Mo Terminal

Terminal Terminal

example on Mmain [+] via % v3.11.0 via @ epp_topics
> git commit -am "Add example.py."

03 o

- hook id: black
- files were modified by this hook

reformatted example.py
All done! =

1 file reformatted.

eximple on BEmain [!+] via % v3.11.0 via @ epp_topics
)

Terminal

1/9

1/9

Second commit works

x - = Mo Terminal Q

Terminal Terminal Terminal ~

example on Mmain [+] via % v3.11.0 via @ epp_topics

> git commit -am "Add example.py."

] Yol Failed|
- hook id: black

- files were modified by this hook

reformatted example.py

All done! =
1 file reformatted.

example on H¥main [!+] via % v3.11.0 via @ epp_topics

> git commit -am "Add example.py."

B LACK e+ vt ettt e e e e e e e e e e e e Passed
[main 4ee06b0] Add example.py.

1 file changed, 20 insertions(+)

create mode 100644 example.py

eXﬁmple on MWmain via % v3.11.0 via @ epp_topics
>

