
Effective Programming Practices for Economists

Software engineering

Which errors to handle?

Janoś Gabler and Hans-Martin von Gaudecker

1 / 5

Reminder of Example

def create_markdown_table(data):

 """Create a markdown table from a list of dictionaries or a dictionary of lists.

 """

 if isinstance(data, dict):

 lod = convert_dol_to_lod(data)

 else:

 lod = data

 keys = list(lod[0])

 lines = [

 _create_header(keys),

 _create_separator(len(keys)),

]

 for row in lod:

 lines.append(_create_data_row(row))

 return "\n".join(lines)

1 / 5

Which errors to handle?

If your function is correct the only source of errors is data

To make sure your function is correct, testing is better than error handling

So what could go wrong with data ?

data is neither a list nor a dict

data is a dict but contains values that are not lists

data is a dict of lists but the lists have different lengths

data is a list, but contains entries that are not dicts

data is a list of dicts but the dicts have different keys

` `

` `

` `

` `

` `

` `

` `

1 / 5

Goals

Raise errors as early as possible

Absolutely avoid duplicated code for error handling

Try to avoid running checks repeatedly

1 / 5

Where to handle errors in the example?

in create_markdown_table

data is neither a list nor a dict

in convert_dol_to_lod :

data is a dict but contains values that are not lists

data is a dict of lists but the lists have different lengths

in create_markdown_table , branch of if-statement that gets called if data is a list:

data is a list, but contains entries that are not dicts

data is a list of dicts but the dicts have different keys

` `

` `

` `

` `

` `

` `

` `

` `

1 / 5

