
Effective Programming Practices for Economists

Scientific Computing

Measuring runtime

Janoś Gabler and Hans-Martin von Gaudecker

1 / 6

Example

Assume we want to
evaluate the function
multiple times

Will be the running
example for all speedup
screencasts

Possible applications

Structural models with
production

Skill formation models

def array_cobb_douglas(factors, weights, a):
 out = np.empty(len(factors))
 for i in range(len(factors)):
 out[i] = _cobb_douglas(factors[i], weights, a)
 return out

def _cobb_douglas(factors, weights, a):
 return a * np.prod(factors**weights)

1 / 6

Setting up representative inputs

Sizes should be representative of
your real application!

Not all algorithms scale
linearly

You want to optimize what you
really need!

Use random numbers for inputs

number of input factors
k = 5
number of evaluations
n = 10_000

set up random inputs
rng = np.random.default_rng(93726483)
factors = rng.uniform(0.1, 3, size=(n, k))
weights = np.array([0.2, 0.1, 0.3, 0.2, 0.2])
a = 1.2

1 / 6

Timing fast functions

%timeit only works in notebooks!

It does many things automatically

discard outliers

determine how often the code is evaluated

determine suitable units of time

%timeit array_cobb_douglas(factors, weights, a)

25.1 ms ± 488 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

` `

1 / 6

Timing slow functions

Use this if your function takes several
seconds and you only want to evaluate
it once

Do not use time.time instead of
time.perf_counter because it has very

low resolution on windows (full
seconds)

Only interpret differences between
perf_counter evaluations

from time import perf_counter

start = perf_counter()
array_cobb_douglas(factors, weights, a)
runtime = perf_counter() - start
runtime

` `

` `

` `

1 / 6

Limitations
Measured runtime depends on background tasks

Try to run few applications in the background

Do not run timings in parallel!

Runtime does not tell you where the time is spent

Need profiling

1 / 6

