1/6

Effective Programming Practices for Economists

Scientific Computing
Measuring runtime

Janos Gabler and Hans-Martin von Gaudecker

Example

def array_cobb_douglas(factors, weights, a):

def

(
out = np.empty(len(factors))
for i in range(len(factors)):
out[i] = _cobb_douglas(factors[i], weights, a)
return out

_cobb_douglas(factors, weights, a):
return a * np.prod(factors**weights)

Assume we want to
evaluate the function
multiple times

Will be the running
example for all speedup
screencasts

Possible applications

= Structural models with
production

m Skill formation models

1/6

1/6

Setting up representative inputs

K = 5 m Sizes should be representative of
your real application!

n = 10_000
= Not all algorithms scale

rng = np.random.default_rng(93726483) Imearly

factors = rng.uniform(©.1, 3, size=(n, k)) o

weights = np.array([0.2, 8.1, 0.3, 0.2, 0.2]) = You want to optimize what you

a =12 really need!

= Use random numbers for inputs

1/6

Timing fast functions

%timeit array_cobb_douglas(factors, weights, a)

25.1 ms t+ 488 ps per loop (mean = std. dev. of 7 runs, 10 loops each)

= %timeit only works in notebooks!
= [t does many things automatically
m discard outliers
= determine how often the code is evaluated

m determine suitable units of time

1/6

Timing slow functions

from time import perf_counter = Use this if your function takes several

start = perf_counter() seconds and you only want to evaluate
array_cobb_douglas(factors, weights, a) it once

runtime = perf_counter() - start

runtime

m Do notuse time.time instead of
‘time perf_counter because it has very
low resolution on windows (full
seconds)

= Only interpret differences between
‘perf_counter evaluations

1/6

Limitations

m Measured runtime depends on background tasks
= Try to run few applications in the background
= Do not run timings in parallel!

m Runtime does not tell you where the time is spent

= Need profiling

