
Collections and Generics

Typing Lists, Dicts, and Custom Containers

Effective Programming Practices for Economists

1 / 18

Built-in Collection Types

Pattern: container[element_type]

list[T] - list of T

dict[K, V] - dict with keys K and values V

tuple[T1, T2] - tuple with specific types

set[T] - set of T

names: list[str] = ["Alice", "Bob"]

scores: dict[str, int] = {"Alice": 95, "Bob": 87}

coordinates: tuple[float, float] = (1.0, 2.0)

unique_ids: set[int] = {1, 2, 3}

1 / 18

Lists

List of integers

numbers: list[int] = [1, 2, 3, 4, 5]

List of strings

names: list[str] = ["Alice", "Bob", "Carol"]

Nested list (matrix)

matrix: list[list[float]] = [

 [1.0, 2.0],

 [3.0, 4.0],

]

Empty list with type annotation

results: list[float] = []

1 / 18

Dictionaries

String keys, integer values

word_counts: dict[str, int] = {"hello": 5, "world": 3}

Integer keys, list values

user_scores: dict[int, list[float]] = {

 1: [95.0, 87.5],

 2: [78.0, 82.0],

}

Nested dictionaries

config: dict[str, dict[str, str]] = {

 "database": {"host": "localhost", "port": "5432"},

 "cache": {"host": "redis", "port": "6379"},

}

1 / 18

Tuples: Fixed vs Variable Length

Fixed-length tuple (specific types per position):

Variable-length tuple (homogeneous):

Exactly two elements: (name, age)

person: tuple[str, int] = ("Alice", 30)

Exactly three elements

rgb: tuple[int, int, int] = (255, 128, 0)

Any number of integers

numbers: tuple[int, ...] = (1, 2, 3, 4, 5)

1 / 18

Sets and Frozensets

When to use which:

set - when you need to add/remove elements

frozenset - when you need a hashable set (dict keys, set of sets)

Mutable set

active_users: set[int] = {1, 2, 3}

Immutable frozenset

valid_statuses: frozenset[str] = frozenset({"active", "pending", "closed"})

1 / 18

Abstract Collection Types

from collections.abc import Sequence, Mapping, Iterable

def process_items(items: Sequence[int]) -> int:

 """Accept list, tuple, or any sequence."""

 return sum(items)

def lookup(data: Mapping[str, int], key: str) -> int:

 """Accept dict or any mapping."""

 return data[key]

def count_items(items: Iterable[str]) -> int:

 """Accept any iterable (list, set, generator, etc.)."""

 return sum(1 for _ in items)

1 / 18

When to Use Abstract Types

Use concrete types (list , dict) when:

You need specific methods (e.g., list.append)

You’re returning a value (be specific)

Use abstract types (Sequence , Mapping) when:

You only read from the collection

You want to accept multiple input types

You’re writing library code

Good: Accept any sequence, return specific list

def double_values(values: Sequence[int]) -> list[int]:

 return [v * 2 for v in values]

1 / 18

Generic Functions

T is a type parameter

Same T means "same type throughout"

Type checker infers T from arguments

Type parameter in brackets after function name

def first[T](items: list[T]) -> T:

 """Return first element, preserving the type."""

 return items[0]

Usage:

first([1, 2, 3]) # Returns int

first(["a", "b"]) # Returns str

1 / 18

Constrained Type Parameters

Constraint syntax: T: (Type1, Type2)

T can only be int or float

def add_numbers[T: (int, float)](a: T, b: T) -> T:

 return a + b

add_numbers(1, 2) # OK: both int

add_numbers(1.0, 2.0) # OK: both float

add_numbers(1, 2.0) # Error: mixing types!

1 / 18

Bounded Type Parameters

Bound syntax: T: BaseType

class Animal:

 def speak(self) -> str:

 return "..."

class Dog(Animal):

 def speak(self) -> str:

 return "Woof!"

T must be Animal or a subclass

def make_speak[T: Animal](animal: T) -> str:

 return animal.speak()

1 / 18

Generic Classes

class Stack[T]:

 def __init__(self) -> None:

 self._items: list[T] = []

 def push(self, item: T) -> None:

 self._items.append(item)

 def pop(self) -> T:

 return self._items.pop()

Usage:

int_stack: Stack[int] = Stack()

int_stack.push(1)

int_stack.push(2)

value: int = int_stack.pop() # Type is preserved

1 / 18

Multiple Type Parameters

class Pair[K, V]:

 def __init__(self, key: K, value: V) -> None:

 self.key = key

 self.value = value

 def swap(self) -> "Pair[V, K]":

 return Pair(self.value, self.key)

Usage:

p: Pair[str, int] = Pair("age", 30)

swapped: Pair[int, str] = p.swap()

1 / 18

Callable Types

from collections.abc import Callable

Function that takes two ints and returns a float

Operation = Callable[[int, int], float]

def apply_operation(

 a: int,

 b: int,

 op: Callable[[int, int], float],

) -> float:

 return op(a, b)

def divide(x: int, y: int) -> float:

 return x / y

result = apply_operation(10, 3, divide)

1 / 18

Generic Callable

from collections.abc import Callable

def apply_twice[T, R](

 func: Callable[[T], R],

 value: T,

) -> tuple[R, R]:

 """Apply function twice, return both results."""

 return func(value), func(value)

def square(x: int) -> int:

 return x * x

result: tuple[int, int] = apply_twice(square, 5)

1 / 18

Common Patterns

Optional list parameter:

Dict with default:

def process(items: list[int] | None = None) -> list[int]:

 if items is None:

 items = []

 return [x * 2 for x in items]

def get_config(

 overrides: dict[str, str] | None = None,

) -> dict[str, str]:

 config = {"host": "localhost", "port": "8080"}

 if overrides:

 config.update(overrides)

 return config

1 / 18

Type Narrowing

Type checkers understand:

if x is None / if x is not None

isinstance(x, Type)

assert isinstance(x, Type)

def process(value: int | str | None) -> str:

 if value is None:

 return "empty"

 if isinstance(value, int):

 # Here, type checker knows value is int

 return str(value * 2)

 # Here, type checker knows value is str

 return value.upper()

1 / 18

Summary

Collections:

list[T] , dict[K, V] , tuple[T1, T2] , set[T]

Use Sequence , Mapping , Iterable for flexible inputs

Generics:

def func[T](...) for generic functions

class Foo[T]: for generic classes

T: BaseType for bounds, T: (A, B) for constraints

1 / 18

