1/18

Collections and Generics

Typing Lists, Dicts, and Custom Containers

Effective Programming Practices for Economists

Built-in Collection Types

names: list[str Alice Bob

scores: dict[str, int Alice": 95 Bob 87
coordinates: tuple[float, float 1.0, 2.0
unique_ids: set[int 1, 2, 3

Pattern: container[element_type]
m 1ist[T] -listof T
= dict[K, V] -dictwith keys K and values V
m tuple[T1, T2] -tuple with specific types
m set[T] -setofT

1/18

1/18

Lists

List of integers
numbers: list[int] = [1, 2, 3, 4, 5]

List of strings
names: list[str] = ["Alice", "Bob", "Carol"]
Nested list (matrix)
matrix: list[list[float]] = |
[1.0, 2.0],
[3.0, 4.0],

Empty list with type annotation
results: list[float] = []

Dictionaries

String keys, integer values
word_counts: dict[str, int] = {"hello": 5, "world

Integer keys, list values
user_scores: dict[int, list[float]] = {
1: [95.08, 87.5],
2: [78.0, 82.0],

Nested dictionaries
config: dict[str, dict[str, str]] = {

: 3}

database”: {"host": "localhost", "port": "5432"},

cache": {"host": "redis", "port": "6379"},

1/18

1/18

Tuples: Fixed vs Variable Length

Fixed-length tuple (specific types per position):
person: tuple[str, int Alice", 30

rgb: tuple[int, int, int 255, 128, ©

Variable-length tuple (homogeneous):

numbers: tuple[int, ... 1, 2, 3, 4, 5

1/18

Sets and Frozensets

active_users: set|int 1, 2, 3

valid_statuses: frozenset[str frozenset({"active pending closed

When to use which:
= set - when you need to add/remove elements

» frozenset - when you need a hashable set (dict keys, set of sets)

1/18

Abstract Collection Types

from collections.abc import Sequence, Mapping, Iterable

def process_items(items: Sequence[int]) -> int:
Accept list, tuple, or any sequence.
return sum(items)

def lookup(data: Mapping[str, int], key: str) -> int:
Accept dict or any mapping.
return datalkey]

def count_items(items: Iterable[str]) -> int:
Accept any iterable (list, set, generator, etc.).
return sum(1 for _ in items)

When to Use Abstract Types

Use concrete types (1ist, dict) when:
= You need specific methods (e.g., 1list.append)

= You're returning a value (be specific)

Use abstract types (Sequence, Mapping) when:

= You only read from the collection
= You want to accept multiple input types

= You're writing library code

def double_values(values: Sequence[int list[int
return [v * 2 for v in values

1/18

1/18

Generic Functions

def first[T]|(items: 1list[T]) -> T
Return first element, preserving the type.
return items|0

first([1, 2, 3
first a b

T isa type parameter
= Same T means "same type throughout"

» Type checker infers T from arguments

1/18

Constrained Type Parameters

def add_numbers|[T int, float a: T, b: T) ->T
return a + b

add_numbers(1, 2

add_numbers(1.0, 2.0
add_numbers(1, 2.0

Constraint syntax: T: (Typel, Type2)

1/18

Bounded Type Parameters

class Animal
def speak(self str
return

class Dog(Animal

def speak(self str
return "Woof!

def make_speak|[T: Animal](animal: T) -> str
return animal.speak

Bound syntax: T: BaseType

1/18

Generic Classes

class Stack|[T]:
def __init__(self) -> None:
self._items: list[T] = []

def push(self, item: T) -> None:
self._items.append(item)

def pop(self) -> T:
return self._items.pop()

int_stack: Stack[int] = Stack()
int_stack.push(1)
int_stack.push(2)

value: int = int_stack.pop()

Multiple Type Parameters

class Pair([K, V
def __init__(self, key: K, value: V None
self .key = key
self.value = value

def swap(self Pair[V, K]

return Pair(self.value, self.key

p: Pair[str, int Pair("age 30
swapped: Pair[int, str p.swap

1/18

Callable Types

from collections.abc import Callable

Operation = Callable[[int, int], float]

def apply_operation(

a: int,

b: int,

op: Callable[[int, int], float],
) -> float:

return op(a, b)

def divide(x: int, y: int) -> float:
return x /vy

result = apply_operation(10, 3, divide)

1/18

Generic Callable

from collections.abc import Callable

def apply_twice[T, R](
func: Callable[[T], R,
value: T,

) -> tuple[R, R]:

Apply function twice, return both results.

return func(value), func(value)

def square(x: int) -> int:
return x * x

result: tuple[int, int] = apply_twice(square, 5)

1/18

1/18

Common Patterns

Optional list parameter:

def process(items: list[int] | None = None list[int
if items is None
items
return [x * 2 for x in items

Dict with default;

def get_config

overrides: dict[str, str] | None = None
dict[str, str
config host localhost port 8080

if overrides
config.update(overrides
return config

1/18

Type Narrowing

def process(value: int | str | None str
if value is None
return “empty
if isinstance(value, int

return str(value * 2

return value.upper

Type checkers understand:
m if x is None / if x is not None
m isinstance(x, Type)

m gssert isinstance(x, Type)

Summary

Collections;
m 1ist[T], dict[K, V], tuple[T1, T2], set[T]

m Use Sequence, Mapping, Iterable for flexible inputs

Generics:
m def func[T](...) forgeneric functions

m class Foo[T]: for generic classes

m T: BaseType forbounds, T: (A, B) for constraints

1/18

