Effective Programming Practices for Economists

Background

A Primer on Graphs

Janoś Gabler and Hans-Martin von Gaudecker

Graph definition

A graph G is a pair (N, E) of sets, where N are nodes and E are edges:

$$
G=(N, E)
$$

Edges are

- sets of two nodes (undirected graphs)
- pairs of nodes (directed graphs)

Chain (undirected)

$$
\begin{aligned}
N= & \left\{x_{0}, x_{1}, x_{2}, x_{3}\right\} \\
E=\{ & \\
& \left\{x_{0}, x_{1}\right\}, \\
& \left\{x_{1}, x_{2}\right\}, \\
& \left\{x_{2}, x_{3}\right\}
\end{aligned}
$$

Chain (undirected)

$$
\begin{aligned}
N= & \left\{x_{0}, x_{1}, x_{2}, x_{3}\right\} \\
E=\{ & \\
& \left\{x_{1}, x_{0}\right\}, \\
& \left\{x_{1}, x_{2}\right\}, \\
& \left\{x_{2}, x_{3}\right\}
\end{aligned}
$$

Chain (directed)

$$
\left.\begin{array}{rl}
N= & \left\{x_{0}, x_{1}, x_{2}, x_{3}\right\} \\
E= & \{ \\
& \left(x_{0}, x_{1}\right), \\
& \left(x_{1}, x_{2}\right), \\
& \left(x_{2}, x_{3}\right)
\end{array}\right\}
$$

Tree (undirected)

$$
\begin{aligned}
N= & \left\{x_{0}, x_{1}, \ldots, x_{8}\right\} \\
E= & \{ \\
& \left\{x_{0}, x_{1}\right\},\left\{x_{1}, x_{2}\right\},\left\{x_{2}, x_{3}\right\}, \\
& \left\{x_{2}, x_{4}\right\},\left\{x_{1}, x_{5}\right\},\left\{x_{5}, x_{6}\right\}, \\
& \left\{x_{5}, x_{7}\right\},\left\{x_{5}, x_{8}\right\} \\
\} &
\end{aligned}
$$

Tree (directed, "arborescence")

$$
\begin{aligned}
N= & \left\{x_{0}, x_{1}, \ldots, x_{8}\right\} \\
E=\{ & \\
& \left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right), \\
& \left(x_{2}, x_{4}\right),\left(x_{1}, x_{5}\right),\left(x_{5}, x_{6}\right), \\
& \left(x_{5}, x_{7}\right),\left(x_{5}, x_{8}\right)
\end{aligned}
$$

Directed Acyclic Graph (DAG)

$$
\begin{aligned}
N= & \left\{x_{0}, x_{1}, \ldots, x_{8}\right\} \\
E= & \{ \\
& \left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right), \\
& \left(x_{2}, x_{4}\right),\left(x_{1}, x_{5}\right),\left(x_{5}, x_{6}\right), \\
& \left(x_{5}, x_{7}\right),\left(x_{5}, x_{8}\right),\left(x_{4}, x_{6}\right) \\
& \}
\end{aligned}
$$

Directed Acyclic Graph

$$
\begin{aligned}
N= & \left\{x_{0}, x_{1}, \ldots, x_{8}\right\} \\
E=\{ & \\
& \left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right), \\
& \left(x_{2}, x_{4}\right),\left(x_{1}, x_{5}\right),\left(x_{5}, x_{6}\right), \\
& \left(x_{5}, x_{7}\right),\left(x_{5}, x_{8}\right),\left(x_{4}, x_{6}\right), \\
& \left(x_{5}, x_{0}\right) \\
\} &
\end{aligned}
$$

Graph Use Cases

- The file system
- Git
- Reproducible research
- Causal theory
- Behavioural economics
-

