1/7

Effective Programming Practices for Economists

Scientific Computing
Writing fast code with numba

Janos$ Gabler and Hans-Martin von Gaudecker

1/7

Why numba can be fast

= Python code is just-in-time compiled to machine code

= It builds on top of numpy
» Efficient storage of data in arrays
= All dtypes known at compile-time

= Uses same technology as Julia under the hood

1/7

Implications

= Loops can be super fast
= Avoids some of the drawbacks of vectorized code

= However: Not guaranteed to be faster than numpy

1/7

Numba is picky

= Need to write out all loops
= Works best if all your data is in scalars or arrays
= No dicts, lists or NamedTuples
= Inside compiled functions you cannot call uncompiled functions
= Cannot call most libraries
= Sometimes need to re-implement algorithms in numba compatible ways

Therefore, numba is intended to speed up your bottlenecks, not to compile your
entire program

1/7

Naively jiting the example

from numba import njit

= The function is numba compatible
njit but will not be optimal because not
def array_cobb_douglas(factors, weights, a a” IOOpS are Written out

out np.empty(len(factors
for i in range(len(factors

out[i _cobb_douglas(factors[i weights, a " It Stl“ becomes mUCh faSter than
return out before (~20x speedup)

njit
def _cobb_douglas(factors, weights, a
return a * np.prod(factors**weights

%timeit array_cobb_douglas(factors, weights, a

1.22 ms + 39.6 ps per loop

Full loops

njit

def numba_array_cobb_douglas(factors, weights, a

out np.empty(len(factors

for i in range(len(factors
out_i a
for j in range(len(weights

out_i factors[i, j|**weights]|]j

out|i out_i
return out

%timeit numba_array_cobb_douglas(factors

602 ps + 3.62 pus per loop

weights

a

1/7

Writing out loops yields gets us
another ~2x speedup (~40x over
original)

Here, still slower than vectorized
numpy but this is not always the case!

1/7

