
Effective Programming Practices for Economists

Scientific Computing

Writing fast code with numba

Janoś Gabler and Hans-Martin von Gaudecker

1 / 7

Why numba can be fast
Python code is just-in-time compiled to machine code

It builds on top of numpy

Efficient storage of data in arrays

All dtypes known at compile-time

Uses same technology as Julia under the hood

1 / 7

Implications
Loops can be super fast

Avoids some of the drawbacks of vectorized code

However: Not guaranteed to be faster than numpy

1 / 7

Numba is picky
Need to write out all loops

Works best if all your data is in scalars or arrays

No dicts, lists or NamedTuples

Inside compiled functions you cannot call uncompiled functions

Cannot call most libraries

Sometimes need to re-implement algorithms in numba compatible ways

Therefore, numba is intended to speed up your bottlenecks, not to compile your
entire program

1 / 7

Naively jiting the example

The function is numba
compatible but will not be
optimal because not all
loops are written out

It still becomes much
faster than before (~20×
speedup)

from numba import njit

@njit
def array_cobb_douglas(factors, weights, a):
 out = np.empty(len(factors))
 for i in range(len(factors)):
 out[i] = _cobb_douglas(factors[i], weights, a)
 return out

@njit
def _cobb_douglas(factors, weights, a):
 return a * np.prod(factors**weights)

(inputs as before)

%timeit array_cobb_douglas(factors, weights, a)

1.22 ms ± 39.6 µs per loop

1 / 7

Full loops

Writing out loops yields
gets us another ~2×
speedup (~40× over
original)

Here, still slower than
vectorized numpy but this
is not always the case!

@njit
def numba_array_cobb_douglas(factors, weights, a):
 out = np.empty(len(factors))
 for i in range(len(factors)):
 out_i = a
 for j in range(len(weights)):
 out_i *= factors[i, j]**weights[j]
 out[i] = out_i
 return out

%timeit numba_array_cobb_douglas(factors, weights, a)

602 µs ± 3.62 µs per loop

1 / 7

1 / 7

