
Effective Programming Practices for Economists

Basic Python

Lists, tuples and sets

Janoś Gabler and Hans-Martin von Gaudecker

1 / 8

Contents

Unlabeled containers

Lists

Tuples

Sets

Selecting elements

When to use unlabeled containers

Which one to use

1 / 8

Lists

Created with square brackets

De�nition: Mutable sequence of objects

mutable: Can change it after creation

sequence: An ordered collection

of objects: Items can consist of anything

Lists are used a lot!

Highly optimized for fast appending!

len works for all collections

>>> a = [1, 2, 3]

>>> type(a)

<class 'list'>

>>> a.append(4)

>>> a

[1, 2, 3, 4]

>>> a[0] = "bla"

>>> a

['bla', 2, 3, 4]

>>> len(a)

4

` `

1 / 8

Tuples

Created with round brackets

De�nition: Immutable sequence of objects

immutable: Cannot change after creation

Single element tuples need a comma

But sometimes you don’t need the brackets!

Less �exible than lists, less common

Somewhat unfair:

immutable: often helps to prevent bugs

hashable: can use in more locations

>>> a = (1, 2, 3)

>>> type(a)

<class 'tuple'>

>>> b = (1)

>>> type(b)

<class 'int'>

>>> c = (1,)

>>> type(c)

<class 'tuple'>

>>> d = 2,

>>> type(d)

<class 'tuple'>

1 / 8

Selecting elements

Selecting elements is the same for lists,

tuples, and other sequences

Indexing starts at 0

Upper index of slices is not included

lower and upper index can be left implicit

negative indices start from the end

>>> a = [1, 2, 3, 4, 5]

>>> a[1]

2

>>> a[1: 2]

[2]

>>> a[:2]

[1, 2]

>>> a[2:]

[3, 4, 5]

>>> a[-1]

[5]

1 / 8

Sets

Created with curly braces

De�nition: Mutable unordered collection of

unique hashable items

unordered: order is unde�ned and can

change

unique: duplicates are dropped at

creation

hashable: immutable

Empty set can not be created with curly

braces

>>> a = {3, 2, 1, 3}

>>> a

{1, 2, 3}

>>> b = {}

>>> type(b)

<class 'dict'>

>>> c = set()

>>> type(c)

<class 'set'>

≈

1 / 8

Set operations

Sets are highly optimized for:

membership checking

union

intersection

Lists and tuples would be much slower

>>> a = {1, 2, 3}

>>> b = {1, 5}

membership checking

>>> 2 in a

True

union

>>> a | b

{1, 2, 3, 5}

intersection

>>> a & b

{1}

1 / 8

1 / 8

