1/5

Effective Programming Practices for Economists

Basic Python

Comprehensions

Janos$ Gabler and Hans-Martin von Gaudecker

1/5

Common loop patterns

The mapping loop = Both initialize and append
->> squares = At least three lines
>>> for 1 dn [1, 2,3, 4,5 = Can lead to deep indentation

squares.append(i ** 2
>>> squares
1, 4, 9, 16, 25

The filtering loop

>>> even
>>> for i in range(10
if 1 % 2 ==
o even.append(i
e, 2, 4, 6, 8

List comprehensions

Set notation = List comprehensions are inspired by

set notation
Can call arbitrary functions

= More readable than loops as long as it
fits on one line!

= Not much faster than loops

{z*|z € {1,2,3,4,5}}
{z|z € {0,1,...,9},z mod 2 =0}

List comprehension

>>> [1i ** 2 for i in [1, 2, 3, 4, 5
1, 4, 9, 16, 25

>>> [i for i in range(10) if 1 % 2 == 0
0, 2, 4, 6, 8

>>> [i if i % 2 == 0 else @ for i in range(10
0, 0, 2, 0, 4, 0, 6, 0, 8, 0@

1/5

Dict comprehension

o> {411 % 2 for 1 4n [1. 2. 3. 4. 5 = Inside a dict comprehension you can
1:1,2: 4, 3: 9, 4: 16, 5: 25 loop over any iterable

>>> skills = More readable than loops if it fits on
Raymond": 8 one line

Guido 10

Tim": 9

>>> {k: v for k, v in skills.items if v >= 9
Guido 10 Tim 9

1/5

When to use

Speed

» Comprehensions are a few percent faster than for loops
= Vectorization can be 100 x faster than for loops

Readability

» Comprehensions are more readable if they fit on one line
» Loops are more readable if there are if conditions

