
Effective Programming Practices for Economists

Basic Python

Comprehensions

Janoś Gabler and Hans-Martin von Gaudecker

1 / 5

Common loop patterns

The mapping loop

The filtering loop

Both initialize and append
At least three lines
Can lead to deep indentation

>>> squares = []
>>> for i in [1, 2, 3, 4, 5]:
... squares.append(i ** 2)
>>> squares
[1, 4, 9, 16, 25]

>>> even = []
>>> for i in range(10):
... if i % 2 == 0:
... even.append(i)
[0, 2, 4, 6, 8]

1 / 5

List comprehensions

Set notation

List comprehension

List comprehensions are
inspired by set notation
Can call arbitrary functions
More readable than loops as
long as it fits on one line!
Not much faster than loops

{x ∣x ∈2 {1, 2, 3, 4, 5}}
{x∣x ∈ {0, 1, ..., 9},x mod 2 = 0}

>>> [i ** 2 for i in [1, 2, 3, 4, 5]]
[1, 4, 9, 16, 25]

>>> [i for i in range(10) if i % 2 == 0]
[0, 2, 4, 6, 8]

>>> [i if i % 2 == 0 else 0 for i in range(10)]
[0, 0, 2, 0, 4, 0, 6, 0, 8, 0]

1 / 5

Dict comprehension
Inside a dict comprehension
you can loop over any iterable
More readable than loops if it
fits on one line

>>> {i: i ** 2 for i in [1, 2, 3, 4, 5]}
{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

>>> skills = {
... "Raymond": 8,
... "Guido": 10,
... "Tim": 9,
... }
>>> {k: v for k, v in skills.items() if v >= 9}
{'Guido': 10, 'Tim': 9}

1 / 5

When to use
Speed

Comprehensions are a few percent faster than for loops
Vectorization can be 100 x faster than for loops

Readability

Comprehensions are more readable if they fit on one line
Loops are more readable if there are if conditions

1 / 5

