
Effective Programming Practices for Economists

Debugging

Strategies for debugging

Janoś Gabler and Hans-Martin von Gaudecker

1 / 10

Agans’ rules
0. Get it right the first time
1. What is it supposed to do?
2. Is it plugged in?
3. Make it fail
4. Divide and conquer
5. Change one thing at a time, for a reason
6. Write it down
7. Be humble

1 / 10

Get it right the first time
Avoiding debugging is better than being good at debugging
Software engineering is all about that
Your major tools are:

Unit testing
Error handling
Writing readable and modular code

1 / 10

What is it supposed to do?
First step is knowing what the problem is
"It doesn’t work" is not good enough
What exactly is going wrong?
How do you know?
You will learn a lot by following execution in a debugger and trying to anticipate
what the program is going to do next

1 / 10

Is it plugged in?
Are you actually exercising the problem that you think you are?
Are you giving it the right test data?
Is it configured the way you think it is?
Is it the version you think it is?
Did you activate the environment?
Why are you sure?
Maybe the reason you cannot isolate the problem is that it is not there

1 / 10

Make it fail
You can only debug things when they go wrong
Find a test case that makes the code fail and simplify it as much as possible
Use the scientific method: Formulate a hypothesis, make a prediction, conduct an
experiment
Each experiment becomes a test case

1 / 10

Divide and conquer
The smaller the gap between cause and effect, the easier the relationship is to see
Take the simplest test case that makes your code fail

Step through it with a debugger to learn what goes wrong
Write tests for untested functions that are called
Add error handling where necessary

Use what you have learned to make your test case even simpler
Repeat until the bug is located

1 / 10

Change one thing at a time, for a reason
Most important: Don’t make things worse!
Make a git commit before you start debugging
Replacing random chunks of code is unlikely to help
So always have a hypothesis before making a change
Every time you make a change, re-run all of your tests immediately
Undo changes that were not helpful
Don’t work on any new features or simple other things while debugging

1 / 10

Write it down
Science works because scientists keep records

Did together with cause the crash?

Or was it ?

Or was not set to the default value after all?"
Records are particularly useful when getting help

People are more likely to listen when you can explain clearly what you did

γ =1 0 x =1 50

x =2 −5

γ 2

1 / 10

Be humble
If you cannot find it in 15 minutes, ask for help

Just explaining the problem aloud is often enough
"Never debug standing up." (Gerald Weinberg) — rushing makes things worse

Do not keep telling yourself why it should work
If it does not, it does not
Never debug while grinding your teeth, either …

Keep track of your mistakes
Just as runners keep track of their time for the 100m sprint
"You cannot manage what you cannot measure." (Bill Hewlett)

1 / 10

