1/10

Effective Programming Practices for Economists

Debugging

Strategies for debugging

Janos Gabler and Hans-Martin von Gaudecker



1/10

Agans’ rules

. Get it right the first time

What is it supposed to do?

Is it plugged in?

Make it fail

Divide and conquer

Change one thing at a time, for a reason
Write it down

Be humble

NouhkWbdN=O



1/10

Get it right the first time

= Avoiding debugging is better than being good at debugging
m Software engineering is all about that

= Your major tools are:
= Unit testing

= Error handling
= Writing readable and modular code



1/10

What is it supposed to do?

= First step is knowing what the problem is
m "It doesn’t work" is not good enough

= What exactly is going wrong?

= How do you know?

= You will learn a lot by following execution in a debugger and trying to anticipate
what the program is going to do next



1/10

Is it plugged in?

= Are you actually exercising the problem that you think you are?

= Are you giving it the right test data?

m [s it configured the way you think it is?

= [s it the version you think it is?

= Did you activate the environment?

= Why are you sure?

m Maybe the reason you cannot isolate the problem is that it is not there



1/10

Make it fail

= You can only debug things when they go wrong
= Find a test case that makes the code fail and simplify it as much as possible

= Use the scientific method: Formulate a hypothesis, make a prediction, conduct an
experiment

= Each experiment becomes a test case



1/10

Divide and conquer

= The smaller the gap between cause and effect, the easier the relationship is to see

= Take the simplest test case that makes your code fail
m Step through it with a debugger to learn what goes wrong

= Write tests for untested functions that are called

= Add error handling where necessary
= Use what you have learned to make your test case even simpler
m Repeat until the bug is located



1/10

Change one thing at a time, for a reason

= Most important: Don't make things worse!

= Make a git commit before you start debugging

m Replacing random chunks of code is unlikely to help

= So always have a hypothesis before making a change

= Every time you make a change, re-run all of your tests immediately

= Undo changes that were not helpful

= Don’t work on any new features or simple other things while debugging



1/10

Write it down

m Science works because scientists keep records
= Did v; = 0 together with 1 = 50 cause the crash?

m Orwasitzy = —5H?
= Or was 72 not set to the default value after all?"

m Records are particularly useful when getting help
m People are more likely to listen when you can explain clearly what you did



1/10

Be humble

= If you cannot find it in 15 minutes, ask for help
= Just explaining the problem aloud is often enough

= "Never debug standing up." (Gerald Weinberg) — rushing makes things worse

= Do not keep telling yourself why it should work
m Ifit does not, it does not

= Never debug while grinding your teeth, either ...

m Keep track of your mistakes
m Just as runners keep track of their time for the 100m sprint

= "You cannot manage what you cannot measure." (Bill Hewlett)



