
Effective Programming Practices for Economists

Software engineering

What does pytest do?

Janoś Gabler and Hans-Martin von Gaudecker

1 / 9

Example
consider this hypothetical survey about a programming course

 Q001 Q002 Q003

0 strongly disagree agree python

1 strongly agree strongly agree Python

2 -77 disagree R

3 agree -77 Python

4 -99 -99 Python

5 nan strongly agree Python

6 neutral strongly agree Python

7 disagree agree python

8 strongly disagree -99 PYTHON

9 -77 -99 Ypthon

From the metadata you know

Q001: I am a coding genius
Q001: I learned a lot
Q003: What is your favourite language

-77 not readable
-99 no reply

>>> raw = pd.read_csv("survey.csv")
>>> raw

1 / 9

Two functions in clean_data.py
def _clean_agreement_scale(sr):
 sr = sr.replace({"-77": pd.NA, "-99": pd.NA})
 categories = ["strongly disagree", "disagree", "neutral", "agree", "strongly agree"]
 dtype = pd.CategoricalDtype(categories=categories, ordered=True)
 return sr.astype(dtype)

def _clean_favorite_language(sr):
 sr = sr.replace({"-77": pd.NA, "-99": pd.NA})
 sr = sr.str.lower().str.strip()
 sr = sr.replace("ypthon", "python")
 return sr.astype(pd.CategoricalDtype())

1 / 9

New module: test_clean_data.py
4 assertions whether actual results match our expectation
Will look at syntax in subsequent screencast

1 / 9

Step 1: Collection

Go through all folders in
working directory
Collect all files with name
test_XXX.py

Go through those files and
collect all functions that start
with test_

All these test functions will be
executed (fine-grained control
possible)

` `

` `

1 / 9

Step 2: Execute the tests
All test functions are executed
A report is printed to the
screen

1 / 9

Step 2: Execute the tests
pytest -v gives more

detailed progress reports
Can be very helpful for long-
running tests

` `

1 / 9

Step 3: Inspect failures
1 / 9

Step 3: Inspect failures with pdb
1 / 9

