
Effective Programming Practices for Economists

Scientific Computing

Writing fast code with numpy

Janoś Gabler and Hans-Martin von Gaudecker

1 / 6

Why numpy can be fast
Numbers are stored efficiently in arrays

dtype of all numbers is known

it is fast to read numbers from memory into registers

numpy functions are implemented very efficiently

in a low-level language like C

by experts who really know what they are doing

Python overhead is incurred once per array, not once per number

1 / 6

Implications for writing fast code
Vectorize everything!

Use broadcasting where possible

Prefer few large arrays over many small arrays

1 / 6

Why the example is slow

This uses array operations (e.g.
np.prod) inside a loop

This is typically slow and full
vectorization should be faster

Even writing out everything as a loop
might be faster than the mix!

def array_cobb_douglas(factors, weights, a):

 out = np.empty(len(factors))

 for i in range(len(factors)):

 out[i] = _cobb_douglas(factors[i], weights, a)

 return out

def _cobb_douglas(factors, weights, a):

 return a * np.prod(factors**weights)

(inputs as before)

%timeit array_cobb_douglas(factors, weights, a)

25.1 ms ± 488 µs per loop

1 / 6

Full vectorization

From ~25 milliseconds to ~215
microseconds

Speedup of more than 110×

Code is actually more readable

Need to get good with axis
argument!

def vectorized_array_cobb_douglas(factors, weights, a):

 return a * np.prod(factors**weights, axis=-1)

%timeit vectorized_array_cobb_douglas(factors, weights, a)

215 µs ± 1.63 µs per loop

1 / 6

Limits of performance with numpy
Numpy is not a compiler, so it cannot

Fuse multiple operations into one (for more speed)

Eliminate intermediate results (for using less memory)

Creating arrays is slower than creating list

Only relevant if you create many tiny arrays

Calling array operations in a loop is typically slow but it is hard to detect this
inefficiency in a profiler

1 / 6

