1/6

Effective Programming Practices for Economists

Scientific Computing
Writing fast code with numpy

Janos$ Gabler and Hans-Martin von Gaudecker

1/6

Why numpy can be fast

= Numbers are stored efficiently in arrays

= dtype of all numbers is known

= jtis fast to read numbers from memory into registers
= numpy functions are implemented very efficiently

= in alow-level language like C

= by experts who really know what they are doing

= Python overhead is incurred once per array, not once per number

1/6

Implications for writing fast code

= Vectorize everything!
= Use broadcasting where possible

= Prefer few large arrays over many small arrays

1/6

Why the example is slow

def array_cobb_douglas(factors, weights, a

= This uses array operations (e.q.

out = np.empty(len(factors

for i in range(len(factors np.prod) inside a loop
out[i _cobb_douglas(factors[i weights, a
return out = This is typically slow and full

vectorization should be faster

def _cobb_douglas(factors, weights, a
return a * np.prod(factors**weights

= Even writing out everything as a loop
might be faster than the mix!

%timeit array_cobb_douglas(factors, weights, a

25.1 ms + 488 ps per loop

1/6

Full vectorization

def vectorized_array_cobb_douglas(factors, weights, a
return a * np.prod(factors**weights, axis=-1

= From ~25 milliseconds to ~215
microseconds

= Speedup of more than 110x
= Code is actually more readable

= Need to get good with axis
argument!

%timeit vectorized_array_cobb_douglas(factors, weights, a

215 pys + 1.63 ps per loop

1/6

Limits of performance with numpy

= Numpy is not a compiler, so it cannot

» Fuse multiple operations into one (for more speed)

= Eliminate intermediate results (for using less memory)
= Creating arrays is slower than creating list

= Only relevant if you create many tiny arrays

= Calling array operations in a loop is typically slow but it is hard to detect this
inefficiency in a profiler

