
Effective Programming Practices for Economists

Software engineering

Defining custom containers

Janoś Gabler and Hans-Martin von Gaudecker

1 / 5

Some drawbacks of dictionaries
Typos lead to runtime errors
Mutable
Hard to document/know which keys
should be there
No autocomplete for keys

>>> student = {
... "first_name": "Janos",
... "last_name": "Gabler",
... "email": "janos@uni-bonn.de",
... }

>>> student["frist_name"]
--

KeyError Traceback (most recent call last)
...
KeyError: 'frist_name'

1 / 5

NamedTuples
Typos can be detected by an IDE
Immutable
Easy to document/know which attributes
are there
Autocomplete for attributes works

>>> from typing import NamedTuple

>>> class Student(NamedTuple):
... first_name: str
... last_name: str
... email: str

>>> student = Student(
... first_name="Janos",
... last_name="Gabler",
... email="janos@uni-bonn.de",
...)

>>> student.first_name
'Janos'

1 / 5

Dataclasses
Same advantages as as NamedTuple

Mutable by default but can by made
immutable
Many powerful options:
Documentation

>>> from dataclasses import dataclass

>>> @dataclass
... class Student:
... first_name: str
... last_name: str
... email: str

>>> student = Student(
... first_name="Janos",
... last_name="Gabler",
... email="janos@uni-bonn.de",
...)

>>> student.first_name
'Janos'

` `

1 / 5

https://docs.python.org/3/library/dataclasses.html

Reminder
Dictionaries are awesome! One of the most optimized data structures you can
imagine.

You’ll need to learn when to use

dicts

NamedTuples

dataclasses

1 / 5

