
Advanced Type Patterns

NewType, Literal, Protocol, and More

Effective Programming Practices for Economists

1 / 19

The Problem: Semantically Different Types

Both are int , but they mean different things

How do we prevent accidental swapping?

def assign_driver(car_id: int, driver_id: int) -> None:

 ...

Oops! Swapped arguments - no type error!

assign_driver(driver_id, car_id)

1 / 19

NewType: Semantic Distinction

from typing import NewType

CarId = NewType("CarId", int)

DriverId = NewType("DriverId", int)

def assign_driver(car_id: CarId, driver_id: DriverId) -> None:

 ...

Now this is a type error!

car: CarId = CarId(123)

driver: DriverId = DriverId(456)

assign_driver(driver, car) # Error: wrong order!

1 / 19

NewType Details

from typing import NewType

UserId = NewType("UserId", int)

Creating values

user_id = UserId(3) # This is just 3 at runtime

NewType is zero-cost at runtime

type(UserId(3)) # <class 'int'>

But type checkers distinguish them

def get_user(user_id: UserId) -> str: ...

get_user(3) # Type error!

get_user(UserId(3)) # OK

1 / 19

Literal Types

Use Literal when:

You have a fixed set of valid string values

You want typo detection

You don’t need a full Enum

from typing import Literal

def set_mode(mode: Literal["read", "write", "append"]) -> None:

 ...

set_mode("read") # OK

set_mode("write") # OK

set_mode("reed") # Type error! Typo caught.

1 / 19

Literal vs Enum

Literal: Simpler, inline, good for APIs accepting strings

Enum: More features, namespace, better for internal use

from typing import Literal

from enum import Enum

Literal approach

Mode = Literal["read", "write", "append"]

Enum approach

class Mode(Enum):

 READ = "read"

 WRITE = "write"

 APPEND = "append"

1 / 19

Protocol: Structural Typing

from typing import Protocol

class Drawable(Protocol):

 def draw(self) -> None:

 ...

def render(item: Drawable) -> None:

 item.draw()

Any class with a draw() method works - no inheritance needed!

class Circle:

 def draw(self) -> None:

 print("Drawing circle")

render(Circle()) # OK! Circle has draw() method

1 / 19

Protocol: Duck Typing Made Safe

"If it walks like a duck…"

Protocols capture the interface, not the inheritance.

from typing import Protocol

class Sized(Protocol):

 def __len__(self) -> int: ...

def print_length(obj: Sized) -> None:

 print(f"Length: {len(obj)}")

All of these work:

print_length([1, 2, 3]) # list has __len__

print_length("hello") # str has __len__

print_length({1, 2}) # set has __len__

1 / 19

Protocol for Callables

from typing import Protocol

class Optimizer(Protocol):

 def minimize(

 self,

 fun: Callable[[float], float],

 x0: float,

) -> float:

 ...

Any object with this method signature works

def run_optimization(optimizer: Optimizer) -> float:

 return optimizer.minimize(lambda x: x**2, 1.0)

1 / 19

@overload: Type-Dependent Returns

from typing import overload

@overload

def process(value: int) -> str: ...

@overload

def process(value: str) -> int: ...

def process(value: int | str) -> str | int:

 if isinstance(value, int):

 return str(value)

 return len(value)

Type checker knows:

reveal_type(process(3)) # str

reveal_type(process("hello")) # int

1 / 19

@overload Use Cases

from typing import overload

@overload

def fetch(url: str, parse: Literal[True]) -> dict: ...

@overload

def fetch(url: str, parse: Literal[False]) -> str: ...

def fetch(url: str, parse: bool = True) -> dict | str:

 response = requests.get(url).text

 if parse:

 return json.loads(response)

 return response

Return type depends on parse argument

data: dict = fetch("...", parse=True)

raw: str = fetch("...", parse=False)

1 / 19

TypeGuard: Custom Type Narrowing

from typing import TypeGuard

def is_string_list(val: list[object]) -> TypeGuard[list[str]]:

 """Check if all elements are strings."""

 return all(isinstance(x, str) for x in val)

def process(items: list[object]) -> None:

 if is_string_list(items):

 # Type checker knows items is list[str] here

 for item in items:

 print(item.upper()) # .upper() is safe!

1 / 19

Final: Prevent Overriding

from typing import Final, final

Final variable - cannot be reassigned

MAX_SIZE: Final = 100

Final method - cannot be overridden

class Base:

 @final

 def critical_method(self) -> None:

 ...

Final class - cannot be subclassed

@final

class Singleton:

 ...

1 / 19

ClassVar: Class-Level Attributes

from typing import ClassVar

from dataclasses import dataclass

@dataclass

class Counter:

 # Shared across all instances

 count: ClassVar[int] = 0

 # Instance attribute

 name: str

 def __post_init__(self) -> None:

 Counter.count += 1

1 / 19

Annotated: Metadata on Types

from typing import Annotated

from annotated_types import Gt, Le

Add constraints as metadata

PositiveInt = Annotated[int, Gt(0)]

Percentage = Annotated[float, Gt(0), Le(100)]

def set_volume(level: Percentage) -> None:

 ...

Used by validation libraries (Pydantic, etc.)

Type checkers may not enforce, but runtime validators can

1 / 19

Real Example: pylcm Type Aliases

from jaxtyping import Float, Int

from jax import Array

Semantic type aliases for domain concepts

type ContinuousState = Float[Array, "..."]

type DiscreteState = Int[Array, "..."]

type RegimeName = str

Function signatures become documentation

def get_next_state(

 current: ContinuousState,

 action: DiscreteState,

) -> ContinuousState:

 ...

1 / 19

Combining Patterns

from typing import NewType, Literal, Protocol

from dataclasses import dataclass

Domain-specific IDs

ModelId = NewType("ModelId", str)

Constrained values

Status = Literal["pending", "running", "completed", "failed"]

Interface for runners

class ModelRunner(Protocol):

 def run(self, model_id: ModelId) -> Status: ...

@dataclass(frozen=True)

class ModelResult:

 model_id: ModelId

 status: Status

 output: dict[str, float]

1 / 19

Pattern: Make Illegal States Unrepresentable

Bad: Can create invalid combinations

@dataclass

class File:

 path: str

 is_open: bool

 content: str | None # Only valid if is_open

Good: Separate types for separate states

@dataclass

class ClosedFile:

 path: str

@dataclass

class OpenFile:

 path: str

 content: str

File = ClosedFile | OpenFile

1 / 19

Summary

Semantic distinction:

NewType - Same runtime type, different static type

Literal - Fixed set of valid values

Structural typing:

Protocol - Interface without inheritance

Advanced control:

@overload - Type-dependent signatures

TypeGuard - Custom type narrowing

Final - Prevent modification

1 / 19

