1/19

Advanced Type Patterns

NewType, Literal, Protocol, and More

Effective Programming Practices for Economists

1/19

The Problem: Semantically Different Types

def assign_driver(car_id: int, driver_id: int None

assign_driver(driver_id, car_id

Both are int, but they mean different things

How do we prevent accidental swapping?

NewType: Semantic Distinction

from typing import NewType

CarId = NewType('CarId int
DriverId = NewType('DriverId", int

def assign_driver(car_id: CarId, driver_id: DriverId

car: Carld CarId(123
driver: DriverId DriverId(456
assign_driver(driver, car

None

1/19

NewType Details

from typing import NewType

UserId = NewType('UserId int
user_id = UserId(3

type(UserId(3

def get_user(user_id: UserId str

get_user(3
get_user(UserId(3

1/19

Literal Types

from typing import Literal

def set_mode(mode: Literall["read write

set_mode('read
set_mode('write
set_mode("reed

Use Literal when:

= You have a fixed set of valid string values

= You want typo detection

» You don't need a full Enum

append

None

1/19

1/19

Literal vs Enum

from typing import Literal
from enum import Enum

Mode = Literall read write append

class Mode(Enum
READ read
WRITE write
APPEND append

Literal: Simpler, inline, good for APIs accepting strings
Enum: More features, namespace, better for internal use

1/19

Protocol: Structural Typing

from typing import Protocol

class Drawable(Protocol

def draw(self None
def render(item: Drawable None
item.draw

class Circle
def draw(self None
print(“Drawing circle

render(Circle

Protocol: Duck Typing Made Safe

from typing import Protocol

class Sized(Protocol
def __len__(self int

def print_length(obj: Sized None
print(f"Length: {len(obj)}"

print_length([1, 2, 3
print_length("hello
print_length({1, 2

"If it walks like a duck..."

Protocols capture the interface, not the inheritance.

1/19

1/19

Protocol for Callables

from typing import Protocol

class Optimizer(Protocol):
def minimize(
self,
fun: Callable[[float], float],
x0: float,
) -> float:

def run_optimization(optimizer: Optimizer) -> float:
return optimizer.minimize(lambda x: x**2, 1.0)

1/19

@overload: Type-Dependent Returns

from typing import overload

overload

def process(value: int str

overload

def process(value: str int

def process(value: int | str str | int

if isinstance(value, int
return str(value
return len(value

reveal_type(process(3
reveal_type(process('hello

1/19

@overload Use Cases

from typing import overload

@overload
def fetch(url: str, parse: Literal[True]) -> dict:
@overload
def fetch(url: str, parse: Literal[False]|) -> str:

def fetch(url: str, parse: bool = True) -> dict | str:
response = requests.get(url).text
if parse:
return json.loads(response)
return response

data: dict = fetch("...", parse=True)
raw: str = fetch("...", parse=False)

1/19

TypeGuard: Custom Type Narrowing

from typing import TypeGuard

def is_string_list(val: list[object TypeGuard|list[str
Check if all elements are strings.
return all(isinstance(x, str) for x in val

def process(items: list[object None
if is_string_list(items

for item in items
print(item.upper

1/19

Final: Prevent Overriding

from typing import Final, final
MAX_SIZE: Final 100

class Base
final
def critical_method(self None

final
class Singleton

1/19

ClassVar: Class-Level Attributes

from typing import ClassVar
from dataclasses import dataclass

dataclass
class Counter

count: ClassVar|int 0
name: str
def __post_init__(self None

Counter.count 1

1/19

Annotated: Metadata on Types

from typing import Annotated
from annotated_types import Gt, Le

PositiveInt = Annotated[int, Gt(©
Percentage = Annotated|float, Gt(®@ Le(100

def set_volume(level: Percentage None

1/19

Real Example: pylcm Type Aliases

from jaxtyping import Float, Int
from jax import Array

type ContinuousState = Float[Array
type DiscreteState Int|Array
type RegimeName str

def get_next_state
current: ContinuousState
action: DiscreteState
ContinuousState

1/19

Combining Patterns

from typing import NewType, Literal, Protocol
from dataclasses import dataclass

ModelId = NewType('ModelId", str)
Status = Literal['pending”, "running", "completed”’, "failed"]

class ModelRunner(Protocol):
def run(self, model_id: ModelId) -> Status:

@dataclass(frozen=True)
class ModelResult:
model_id: ModelId
status: Status
output: dict[str, float]

Pattern: Make

dataclass

class File
path: str
is_open: bool
content: str | None

dataclass
class ClosedFile
path: str

dataclass

class OpenFile
path: str
content: str

File = ClosedFile | OpenFile

lllegal States Unrepresentable

1/19

1/19

Summary

Semantic distinction:
= NewType - Same runtime type, different static type

m |iteral - Fixed set of valid values

Structural typing:

m Protocol - Interface without inheritance

Advanced control:
m @overload - Type-dependent signatures
m TypeGuard - Custom type narrowing

m Final - Prevent modification

