1/12

Why Type Hints?

Making Python Code Safer and More Maintainable

Effective Programming Practices for Economists



1/12

Python is Dynamically Typed

def add(a, b
return a + b

add(1, 2
add("hello world
add([1, 2 3, 4

Flexibility is great, but...
= What types does add actually expect?
= Will it work with my data?

= What does it return?



1/12

The Problem with Dynamic Typing

def calculate_portfolio_return(prices, weights

return sum(p * w for p, w in zip(prices, weights

Questions your IDE can't answer:
» Does prices need to be the same length as weights ?
» Can | pass a pandas Series?

» What if | accidentally swap the arguments?



1/12

Type Hints to the Rescue

def calculate_portfolio_return
prices: list|float
weights: list[float
float
return sum(p * w for p, w in zip(prices, weights

Now we know:
= Both arguments are lists of floats
m The function returns a float

m |DE can warn us about mistakes



1/12

Three Benefits of Type Hints

1. Documentation

Types are always up-to-date documentation (unlike comments)

2. IDE Support

Autocomplete, refactoring, and error detection

3. Bug Prevention

Type checkers catch errors before runtime



1/12

Type Hints are Optional

def greet(name: str str
return f"Hello, {name}"

greet(2

Type hints are for:
= Developers reading the code

» |IDEs providing assistance

» Type checkers (e.g., ty) finding bugs - great as guardrails for Al agents



1/12

Type Checkers: ty

pixi add ty

pixi run ty check my_module.py

def greet(name: str str
return f"Hello, {name}"

greet(3



1/12

IDE Integration

Modern IDEs like VS Code use type hints for:

= Autocomplete - knows what methods are available
= Error highlighting - red squiggles for type mismatches
= Refactoring - safely rename across codebase

= Documentation - hover to see types



Writing Python Like It's Rust

"Parse, don't validate" - Make illegal states unrepresentable

The Rust philosophy applied to Python:
1. Use types to encode what something is
2. Make invalid inputs impossible to construct

3. Let the type system catch errors before runtime

Source: Writing Python Like It's Rust

1/12


https://kobzol.github.io/rust/python/2023/05/20/writing-python-like-its-rust.html

1/12

Real-World Impact: optimagic

Before (stringly-typed):

minimize(fun=f, params=x, algorithm="scipy_1lbfgsb

After (strongly-typed):

minimize(fun=f, params=x, algorithm=om.algorithms.scipy_lbfgsb

optimagic migrated its entire API for better user and developer experience.



When to Use Type Hints

Always use them for:
» Function signatures (arguments and return types)
= Class attributes

m Public APlIs

Optional for:
» |Local variables (often inferred)
» Quick scripts and notebooks

= Prototype code

Rule of thumb:;

If someone else will read it, add types.

1/12



Summary

Type hints make Python code:
1. Self-documenting - Types explain intent
2. Safer - Catch bugs before runtime

3. More maintainable - Refactor with confidence

Caveat: Active area of progress in Python

Things have evolved a lot in recent years!

1/12



