
Why Type Hints?

Making Python Code Safer and More Maintainable

Effective Programming Practices for Economists

1 / 12

Python is Dynamically Typed

Flexibility is great, but…

What types does add actually expect?

Will it work with my data?

What does it return?

def add(a, b):

 return a + b

add(1, 2) # Returns 3

add("hello", " world") # Returns "hello world"

add([1, 2], [3, 4]) # Returns [1, 2, 3, 4]

1 / 12

The Problem with Dynamic Typing

Questions your IDE can’t answer:

Does prices need to be the same length as weights ?

Can I pass a pandas Series?

What if I accidentally swap the arguments?

def calculate_portfolio_return(prices, weights):

 # What are prices and weights?

 # Lists? NumPy arrays? DataFrames? Dicts?

 return sum(p * w for p, w in zip(prices, weights))

1 / 12

Type Hints to the Rescue

Now we know:

Both arguments are lists of floats

The function returns a float

IDE can warn us about mistakes

def calculate_portfolio_return(

 prices: list[float],

 weights: list[float],

) -> float:

 return sum(p * w for p, w in zip(prices, weights))

1 / 12

Three Benefits of Type Hints

1. Documentation

Types are always up-to-date documentation (unlike comments)

2. IDE Support

Autocomplete, refactoring, and error detection

3. Bug Prevention

Type checkers catch errors before runtime

1 / 12

Type Hints are Optional

Type hints are for:

Developers reading the code

IDEs providing assistance

Type checkers (e.g., ty) finding bugs → great as guardrails for AI agents

Python doesn't enforce types at runtime!

def greet(name: str) -> str:

 return f"Hello, {name}"

greet(2) # Runs without error!

Returns "Hello, 2"

1 / 12

Type Checkers: ty

Install ty (from Astral, makers of ruff and uv)

pixi add ty

Check your code

pixi run ty check my_module.py

my_module.py

def greet(name: str) -> str:

 return f"Hello, {name}"

greet(3) # ty error: Argument 1 has incompatible type "int"

1 / 12

IDE Integration

Modern IDEs like VS Code use type hints for:

Autocomplete - knows what methods are available

Error highlighting - red squiggles for type mismatches

Refactoring - safely rename across codebase

Documentation - hover to see types

1 / 12

Writing Python Like It’s Rust

"Parse, don’t validate" - Make illegal states unrepresentable

The Rust philosophy applied to Python:

1. Use types to encode what something is

2. Make invalid inputs impossible to construct

3. Let the type system catch errors before runtime

Source: Writing Python Like It’s Rust

1 / 12

https://kobzol.github.io/rust/python/2023/05/20/writing-python-like-its-rust.html

Real-World Impact: optimagic

Before (stringly-typed):

After (strongly-typed):

optimagic migrated its entire API for better user and developer experience.

minimize(fun=f, params=x, algorithm="scipy_lbfgsb")

Typo? No error until runtime!

minimize(fun=f, params=x, algorithm=om.algorithms.scipy_lbfgsb)

IDE autocomplete, typos caught immediately

1 / 12

When to Use Type Hints

Always use them for:

Function signatures (arguments and return types)

Class attributes

Public APIs

Optional for:

Local variables (often inferred)

Quick scripts and notebooks

Prototype code

Rule of thumb:

If someone else will read it, add types.

1 / 12

Summary

Type hints make Python code:

1. Self-documenting - Types explain intent

2. Safer - Catch bugs before runtime

3. More maintainable - Refactor with confidence

Caveat: Active area of progress in Python

Things have evolved a lot in recent years!

1 / 12

