
Effective Programming Practices for Economists

Software engineering

Idea of unit testing

Janoś Gabler and Hans-Martin von Gaudecker

1 / 6

The assert statement
assert raises an error if a

condition is not fulfilled
Often used to check that
assumptions about inputs are
fulfilled
Can also be used to test the
behavior of functions

>>> assert 5 == 6, "Numbers are not equal."

--

AssertionError Traceback (most recent call last)

/home/janos/file.py line 1

----> 1 assert 5 == 6, "Numbers are not equal"

AssertionError: Numbers are not equal

>>> assert False, "This always fails."

--

AssertionError Traceback (most recent call last)

/home/janos/file.py line 1

----> 1 assert False, "This always fails"

AssertionError: This always fails

1 / 6

Testing a simple function
Test cases can be calculated by hand
for simple edge cases
Sometimes you can get results from
other libraries, textbooks, etc.
If this runs without error, we are
confident the function works for
other inputs

def cobb_douglas(labor, capital, alpha):

 return labor ** alpha * capital ** (1 - alpha)

assert cobb_douglas(1, 1, 0.5) == 1

assert cobb_douglas(16, 1, 0.25) == 2

assert cobb_douglas(1, 16, 0.75) == 2

1 / 6

Testing interfaces, not implementation
If you define good functions, their
interface remains stable
Can improve the implementation
without worrying it will break things

def combine_keys_and_values(keys, values):

 return dict(zip(keys, values))

def combine_keys_and_values_2(keys, values):

 return {k: v for k, v in zip(keys, values)}

expected = {"a": 1, "b": 2}

got1 = combine_keys_and_values(["a", "b"], [1, 2])

got2 = combine_keys_and_values(["a", "b"], [1, 2])

1 / 6

This works for any project!
Unit tests don’t work for scientific code. If we knew the result in advance it wouldn’t
be science
– Anonymous scientist

Many scientists think they cannot use unit tests in their projects
But any project can be decomposed into small steps for which you do know what
they should do
Test the steps, not the whole

1 / 6

What are testing frameworks
In the above examples, python would abort after the first failed test
Would be nicer to be able to:

run all tests and get a report in the end
quickly specify subsets of tests to run
run the same tests with multiple inputs

Testing frameworks do just that
Industry standard is pytest which is basically pytask for tests

1 / 6

